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Epistemological questions

Since Plato, the philosophy of mathematics has been concerned
with:

• the nature of mathematical objects, and

• the appropriate justification for mathematical knowledge.

But we employ other normative judgments as well:

• some theorems are interesting

• some questions are natural

• some concepts are fruitful, or powerful

• some proofs provide better explanations than others

• some historical developments are important

• some observations are insightful

. . . and so on.



The problem of multiple proofs

On the standard account, the value of a mathematical proof is that
it warrants the truth of the resulting theorem.

Why, then, do we often value a new proof of a previous established
theorem?

For example, Gauss published six proofs of the law of quadratic
reciprocity in his lifetime, and left us two unpublished versions as
well.

Franz Lemmermeyer has documented 233 proofs (available online,
with references).



The problem of multiple proofs

This question not new. For example:

It might be said: “—that every proof, even of a
proposition which has already been proved, is a
contribution to mathematics”. But why is it a
contribution if its only point was to prove the
proposition? Well, one can say: “the new proof shews (or
makes) a new connexion”. — Wittgenstein, Remarks on
the Foundations of Mathematics, III–60

Indeed, it is not a great mystery. There is a lot we can say about
what we learn from different proofs.

But the philosophy of mathematics has had relatively little to say
about the matter.



The problem of conceptual possibility

It is often said that some mathematical advance was “made
possible” by a prior conceptual development.

For example, Riemann’s introduction of the complex zeta function
and the use of complex analysis made it possible for Hadamard and
de la Vallée Poussin to prove the prime number theorem in 1896.

What is the sense of “possibility” here?

Intuition: a certain “understanding” guides us. (But let’s focus on
the phenomena, not the word.)



Epistemological questions

What the questions have in commmon:

• They have a generally epistemological flavor, involving
“knowledge” or “understanding.”

• They invoke normative assessments.

This is a starting point for philosophical inquiry.



Mathematical Understanding

Overview:

• General epistemological questions

• Intuitions

• Towards a theory of mathematical understanding

• Strategies
• Look to mathematical practice
• Look to interactive theorem proving
• Look to the history of mathematics



Intuitions

Mathematics is hard.

Mathematical solutions, proofs, and calculations involve long
sequences of steps, that have to be chosen and composed in
precise ways.

To compound matters, there are too many options; among the
many steps we may plausibly take, most will get us absolutely
nowhere.

And we have limited cognitive capacities — we can only keep track
of so much data, anticipate the result of a few small steps,
remember so many background facts.

We rely on our understanding to help us and to guide us.



Intuitions

Does understanding the demonstration of a theorem consist in
examining each of the syllogisms of which it is composed in
succession, and being convinced that it is correct and conforms to
the rules of the game? In the same way, does understanding a
definition consist simply in recognizing that the meaning of all the
terms employed is already known, and being convinced that it
involves no contradiction?

. . . Almost all are more exacting; they want to know not only
whether all the syllogisms of a demonstration are correct, but why
they are linked together in one order rather than in another. As
long as they appear to them engendered by caprice, and not by an
intelligence constantly conscious of the end to be attained, they do
not think they have understood.

(Poincaré, Science et méthod, 1908)



Intuitions

Logic teaches us that on such and such a road we are sure of not
meeting an obstacle; it does not tell us which is the road that leads
to the desired end. (Ibid.)

Discovery consists precisely in not constructing useless
combinations, but in constructing those that are useful, which are
an infinitely small minority. Discovery is discernment, selection.
(Ibid.)



Intuitions

It seems to me, then, as I repeat an argument I have learned, that
I could have discovered it. This is often only an illusion; but even
then, even if I am not clever enough to create for myself, I
rediscover it myself as I repeat it. (Ibid.)



Intuitions

Now, in calm weather, to swim in the open ocean is as easy to the
practised swimmer as to ride in a spring-carriage ashore. But the
awful lonesomeness is intolerable. The intense concentration of self
in the middle of such a heartless immensity, my God! who can tell
it? Mark, how when sailors in a dead calm bathe in the open
sea–mark how closely they hug their ship and only coast along her
sides.

(Melville, Moby Dick, Chapter 93)



Intuitions

But not yet have we solved the incantation of this whiteness, and
learned why it appeals with such power to the soul; and more
strange and far more portentous. . . and yet should be as it is, the
intensifying agent in things the most appalling to mankind.

Is it that by its indefiniteness it shadows forth the heartless voids
and immensities of the universe, and thus stabs us from behind
with the thought of annihilation, when beholding the white depths
of the milky way? Or is it, that as in essence whiteness is not so
much a colour as the visible absence of colour; and at the same
time the concrete of all colours; is it for these reasons that there is
such a dumb blankness, full of meaning, in a wide landscape of
snows — a colourless, all-colour of atheism from which we shrink?

(Meville, Moby Dick, Chapter 42).



Intuitions

The sea had jeeringly kept his finite body up, but drowned the
infinite of his soul. Not drowned entirely, though. Rather carried
down alive to wondrous depths, where strange shapes of the
unwarped primal world glided to and fro before his passive eyes;
and the miser-merman, Wisdom, revealed his hoarded heaps; and
among the joyous, heartless, ever-juvenile eternities, Pip saw the
multitudinous, God-omnipresent, coral insects, that out of the
firmament of waters heaved the colossal orbs. He saw God’s foot
upon the treadle of the loom, and spoke it; and therefore his
shipmates called him mad. So man’s insanity is heaven’s sense;
and wandering from all mortal reason, man comes at last to that
celestial thought, which, to reason, is absurd and frantic; and weal
or woe, feels then uncompromised, indifferent as his God.



Towards a theory of understanding

General picture:

• Beyond knowledge, we look to mathematics for modes of
understanding.

• Understanding involves not just factual knowledge, but
something more dynamic: ways of proceeding, modes of
analysis, capacities for thought.

• We value mathematical resources for conferring
understanding.

• Some mathematical resources are overtly syntactic:
definitions, theorems, proofs, questions.

• These give rise to resources that are harder to characterize
precisely: concepts, methods, heuristics, intuitions, . . .



A methodological stance

To make progress, we have to pick a methodological framework:

• a way of thinking about mathematics

• a language for talking about the objects of mathematical
understanding

• a way of posing questions precisely (or at least trying to)

• precise, disciplined ways of answering them

We just have to do it, and see what happens.



A methodological stance

We want a philosophical theory of mathematical understanding
that

• is coherent

• is satisfying

• can inform (and is informed by) other pursuits:
• history of mathematics
• interactive theorem proving and automated reasoning
• psychology and cognitive science
• mathematics education
• mathematics itself

I will make some personal recommendations here.



Recommendations

First recommendation: stay grounded in syntax.

What characterizes mathematics with respect to other scholarly
disciplines is its level of rigor: there are precise norms that dictate
how to make meaningful mathematical claims, and how to
establish their truth.

We can (and have) studied these norms in syntactic terms, with
great success.

Definitions, theorems, proofs, conjectures, questions, and the like
— the “literature” — constitute the starting data.

The more nebulous objects of understanding — concepts, methods,
intuitions, etc. — are manifested in the linguistic artifacts.



Recommendations

Second recommendation: think of the philosophy of mathematics
as a design science, like automative engineering.

A closer look at the syntactic components of mathematics —
definitions, theorems, proofs, theories, and so on — shows them to
be highly structured objects.

When one studies the history of mathematics, or tries to model
real mathematical proofs formally, one has the sense that
mathematical language is beautifully designed to extend our
cognitive reach, make it possible for us to solve increasingly more
difficult problems, construct more elaborate proofs.

What are the general principles?



Recommendations

Third recommendation: start with more specific, focused projects.

I will discuss three strategies for making progress:

• look to the everyday practice of mathematics

• look to interactive theorem proving

• look to the history of mathematics

I will also provide illustrative examples.



Strategies

First strategy: look at ordinary mathematical proofs.

• What are the (inferential and communicative) norms that are
in play?

• What cognitive capacities that are presupposed by their
comprehensibility?

Compare alternative proofs, or textbook presentations, of the same
theorem. Explain

• the structuring of information, and

• the understanding or expertise that is conveyed.

We need to rely on what mathematicians do rather than their self
assessments.



The Elements

For more than two thousand years, Euclid’s Elements was held to
be the paradigm for rigorous argumentation.

But the nineteenth century raised concerns:

• Conclusions are drawn from diagrams, using “intuition” rather
than precise rules.

• Particular diagrams are used to infer general results (without
suitable justification).

Axiomatizations due to Pasch and Hilbert, and Tarksi’s formal
axiomatization later on, were thought to make Euclid rigorous.



The Elements

But in some ways, they are unsatisfactory.

• Proofs in the new systems look very different from Euclid’s.

• The initial criticisms belie the fact that Euclidean practice was
remarkably stable for more than two thousand years.

What is going on?

What are the norms that govern Euclidean reasoning?







First salient feature: the use of diagrams

Observation (Manders): In a Euclidean proof, diagrams are only
used to infer “co-exact” (regional / topological) information, such
as incidence, intersection, containment, etc.

Exact (metric) information, like congruence, is always made
explicit in the text.

Poincaré: “Geometry is the art of precise reasoning from badly
constructed diagrams.”

Abstraction: take the “diagram” to be a representation of the
relevant data.



Second salient feature: generality

Not every feature found in a particular diagram is generally valid.

Euclid manages to avoid drawing invalid conclusions. We need an
explanation as to what secures the generality.



The Elements

Edward Dean, John Mumma, and I did the following:

• Described a formal system that is much more faithful to
Euclid.

• Argued that the system is sound and complete (for the
theorems it can express) relative to Euclidean fields.

• Showed that the system can easily be implemented using
contemporary automated reasoning technology.

In particular, we gave an account of “diagrammatic inference” that
(we argue) explains what we see in Euclid.



Proposition I.10. Assume a and b are distinct points on L.
Construct a point d such that d is between a and b, and ad = db.

By Proposition I.1 applied to a and b, let c be a point such that
ab = bc and bc = ca and c is not on L.

Let M be the line through c and a.
Let N be the line through c and b.
By Proposition I.9 applied to a, c ,
b, M, N, let e be a point such that
∠ace = ∠bce, b and e are on the
same side of M, and a and e are on
the same side of N.
Let K be the line through c and e.
Let d be the intersection of K and L.
Hence ∠ace = ∠acd .
Hence ∠bce = ∠bcd .

a
d

b
L

K

e

c

NM

By Proposition I.4 applied to a, c , d , b, c , d have ad = bd .
Q.E.F.



Lessons

What we learned:

• What makes something mathematics is that there are effective
norms and mechanisms that secure agreement from
practitioners. These are often implicit, and not obvious.

• There is nothing very mysterious about diagrams. They carry
discrete information, and their use is governed by rules, just as
words and symbols do.

• One can disentangle the mathematics from history and
psychology.



Lessons

Philosophy of mathematics should interact with, and provide
conceptual foundations for, fields that rely on some understanding
of what it means to do mathematics:

• mathematics itself

• computer science

• history of mathematics

• psychology and cognitive science

• education, pedagogy

But, to be make progress on core issues, we have to be clear about
the questions we are asking.



Lessons

Sample questions:

• Logical: what role does visualization and diagrammatic
reasoning play in mathematics?

• Cognitive: how do we do it?

• Computational: how can we support it or emulate it?

• Historical: how did these uses arise and evolve?

• Pedagogical: how should we use visualization in teaching?

• . . .

The first question informs, and is informed by, the others.



Strategies

Second strategy: look to interactive theorem proving and
automated reasoning.

Formal verification involves the use of formal methods to verify
correctness, for example:

• verifying that a circuit description, an algorithm, or a network
or security protocol meets its specification; or

• verifying that a proof of a mathematical theorem is correct.

“Interactive theorem proving” is one important approach.



Strategies

Working with a proof assistant involves conveying enough
information to the system to confirm that there is a formal
axiomatic proof.

In fact, most proof systems actually construct a formal proof
object, a complex piece of data that can be verified independently.

“Proof languages” provide expressive models of ordinary
mathematical language, designed to convey knowledge (and
expertise) efficiently.

Understanding what is needed to develop mathematics formally
provides insight into how the informal languages work as well.



Interactive theorem proving

theorem PrimeNumberTheorem:

"(%n. pi n * ln (real n) / (real n)) ----> 1"

!C. simple_closed_curve top2 C ==>

(?A B. top2 A /\ top2 B /\

connected top2 A /\ connected top2 B /\

~(A = EMPTY) /\ ~(B = EMPTY) /\

(A INTER B = EMPTY) /\ (A INTER C = EMPTY) /\

(B INTER C = EMPTY) /\

(A UNION B UNION C = euclid 2)

!d k. 1 <= d /\ coprime(k,d)

==> INFINITE { p | prime p /\ (p == k) (mod d) }



Interactive theorem proving

Theorem Sylow’s_theorem :

[/\ forall P,

[max P | p.-subgroup(G) P] = p.-Sylow(G) P,

[transitive G, on ’Syl_p(G) | ’JG],

forall P, p.-Sylow(G) P ->

#|’Syl_p(G)| = #|G : ’N_G(P)|

& prime p -> #|’Syl_p(G)| %% p = 1%N].

Theorem Feit_Thompson (gT : finGroupType)

(G : {group gT}) :

odd #|G| → solvable G.

Theorem simple_odd_group_prime (gT : finGroupType)

(G : {group gT}) :

odd #|G| → simple G → prime #|G|.



Interactive theorem proving

theorem (in prob_space) central_limit_theorem:

fixes X :: "nat ⇒ ’a ⇒ real"

and µ :: "real measure"

and σ c :: real

and S :: "nat ⇒ ’a ⇒ real"

assumes X_indep: "indep_vars (λi. borel) X UNIV"

and X_integrable: "
∧
n. integrable M (X n)"

and X_mean: "
∧
n. expectation (X n) = c"

and σ_pos: "σ > 0"

and X_square_integrable:

"
∧
n. integrable M (λx. (X n x)2)"

and X_variance: "
∧
n. variance (X n) = σ2"

and X_distrib: "
∧
n. distr M borel (X n) = µ"

defines "S n x ≡
∑

i<n. X i x"

shows "weak_conv_m (λn. distr M borel

(λx. (S n x - n * c) / sqrt (n*σ2)))

std_normal_distribution"



Interactive theorem proving

Challenges:

• Modeling mathematical assertions in a natural way.

• Modeling mathematical proof in a natural way.

• Modeling mathematical expertise, and filling in
“straightforward” inferences automatically.

• Managing large libraries of information.

• Verifying long computations.



Assertion languages

In ordinary mathematics, an expression may denote:

• a natural number: 3, n2 + 1

• an integer: −5, 2j
• an ordered triple of natural numbers: (1, 2, 3)

• a function from natural numbers to reals: (sn)n∈N

• a set of reals: [0, 1]

• a function which takes a measurable function from the reals to the reals and a
set of reals and returns a real:

∫
A f dλ

• an additive group: Z/mZ
• a ring: Z/mZ
• a module over some ring: Z/mZ as a Z-module

• an element of a group: g ∈ G

• a function which takes an element of a group and a natural number and returns
another element of the group: gn

• a homomorphism between groups: f : G → G

• a function which takes a sequence of groups and returns a group:
∏

i Gi

• a function which takes a sequence of groups indexed by some diagram and
homomorphisms between them and returns a group: limi∈D Gi



Assertion languages

In ordinary mathematical language, a lot is left implicit.

In an interactive theorem prover, everything has to be made
explicit.

The infrastructure needed to model ordinary mathematical
vernacular is substantial:

• implicit arguments

• overloading

• type classes

• unification hints

• modules



Algebraic structures

structure semigroup [class] (A : Type) extends has_mul A :=

(mul_assoc : ∀ a b c, mul (mul a b) c = mul a (mul b c))

structure monoid [class] (A : Type)

extends semigroup A, has_one A :=

(one_mul : ∀ a, mul one a = a) (mul_one : ∀ a, mul a one = a)

definition pow {A : Type} [s : monoid A] (a : A) : N → A

| 0 := 1

| (n+1) := pow n * a

theorem pow_add (a : A) (m : N) : ∀ n, a^(m + n) = a^m * a^n

| 0 := by rewrite [nat.add_zero, pow_zero, mul_one]

| (succ n) := by rewrite [add_succ, *pow_succ, pow_add,

mul.assoc]

definition int.linear_ordered_comm_ring [instance] :

linear_ordered_comm_ring int := ...



Proof languages

theorem sqrt_two_irrational {a b : N} (co : coprime a b) :

a^2 6= 2 * b^2 :=

assume H : a^2 = 2 * b^2,

have even (a^2),

from even_of_exists (exists.intro _ H),

have even a,

from even_of_even_pow this,

obtain (c : N) (aeq : a = 2 * c),

from exists_of_even this,

have 2 * (2 * c^2) = 2 * b^2,

by rewrite [-H, aeq, *pow_two, mul.assoc, mul.left_comm c],

have 2 * c^2 = b^2,

from eq_of_mul_eq_mul_left dec_trivial this,

have even (b^2),

from even_of_exists (exists.intro _ (eq.symm this)),

have even b,

from even_of_even_pow this,

assert 2 | gcd a b,

from dvd_gcd (dvd_of_even ‘even a‘) (dvd_of_even ‘even b‘),

have 2 | 1,
by rewrite [gcd_eq_one_of_coprime co at this]; exact this,

show false,

from absurd ‘2 | 1‘ dec_trivial



Lessons

Some of the things we have learned:

• Language is important.

• Notation is important.

• Definitions are important.

• Organization is important.

• Structure is important.

• Infrastructure is important.

• Matching and unification are important.

• Indexing and retrieval are important.

• Methods of reasoning are important.

• Heuristics are important.

The philosophy of mathematics should help us better understand
how, and why.



Lessons

Designing a theorem prover involves designing a language (in a
broad sense):

• axioms, rules

• syntax, notation

• semantics

• idioms

• concepts

• theories

A theorem prover and its libraries can be well designed, or poorly
designed.

The same is true of a piece mathematics.



Strategies

Third strategy: look to the history of mathematics.

Find an important historical development (what Ken Manders calls
a “big deal difference”).

This suggests that we were in

• a certain epistemological state beforehand, and

• a certain epistemological state after,

and that they are different in some important way.

Explain the difference.



Dirichlet’s theorem

In 1837, Dirichlet proved that there are infinitely many primes in
any arithmetic progression in which the first two terms are
relatively prime.

For example, there are no primes in the sequence

10, 25, 40, 55, 70, 85, . . .

There are infinitely many primes in the sequence

4, 13, 22, 31, 40, 40, . . .



Dirichlet’s theorem

Contemporary presentations use Dirichlet characters, certain types
of functions χ : N→ C.

The proofs are higher order:

• One considers sets of characters.

• The characters modulo a positive integer m form a group.

• One considers functions L(s, χ) that take characters as
arguments.

• One sums over sets of characters,∑
χ

χ(m) log L(s, χ) = . . .

In short, functions are mathematical objects, like numbers.



Dirichlet’s theorem

Rebecca Morris and I studied presentations of Dirichlet’s theorem
to understand how functions came to be treated in that way.

• Dirichlet 1837: Dirichlet’s original proof

• Dirichlet 1840, 1841: extensions to Gaussian integers,
quadratic forms

• Dedekind 1863: presention of Dirichlet’s theorem

• Dedekind 1879, Weber 1882: characters on arbitrary abelian
groups

• Hadamard 1896: Dirichlet’s theorem and extensions

• de la Vallée Poussin 1897: Dirichlet’s theorem and extensions

• Kronecker (1901, really 1870’s and 1880’s): constructive,
quantitative proof of Dirichlet’s theorem

• Landau 1909, 1927: Dirichlet’s theorem and extensions



Lessons

Some things we learned:

• Through the middle of the nineteenth century, the word
“function” was used exclusively for functions on the reals or
complexes.

• Even the phrase “number-theoretic function” was novel in
1850.

• There was no general concept of function until around 1879.



Lessons

Regarding the characters:

• There is no (explicit) notion of character in Dirichlet’s proof.

• Early authors were reluctant to treat them as arguments to
functions.

• Early authors were reluctant to sum over them.

• They were often treated as intensional objects, i.e. as
expressions.

Modern features appeared in fits and starts.



Lessons

Treating functions as objects brings benefits.

• Expressions are simplified.

• Proofs become modular.

• The reader has to keep track of less information when parsing
expressions.

• The reader has to keep track of less information when reading
a proof.

• The relevant data and relations are made more salient.

• Lemmas and definitions can be reused elsewhere.

• Lemmas and definitions can be modified and adapted.

• Abstraction leads to greater generality.



Lessons

In other words:

• Dependencies between components are minimized.

• The mathematics become easier to understand.

• It becomes easier to ensure correctness.

• Components are adaptable, reusable, and generalizable.

• Proofs can be modified and varied more easily.

These are exactly the benefits associated with modularity in
software engineering.





Lessons

Why did it take so long to arrive at the contemporary treatment of
functions?

Reading mathematics involves a good deal of tacit knowledge.

When I publish a proof, my intention is that you will read it,
understand it, and accept it as correct.



Lessons

Concerns raised by any methodological expansion:

• Are the new methods, concepts, and notations meaningful?

• Do they come with clear rules of use?

• Are they appropriate to the mathematics?

• Do they answer the questions we have asked?

• Do they provide the information we want?

• Are they reliable?

• Are they likely to cause error or confusion?

Changes to the practice have to be accepted by the community.

The philosophy of mathematics can help us weigh the pros and
cons.



Concluding remarks

Recall the outline of this talk:

• General epistemological questions

• Intuitions

• Towards a theory of mathematical understanding
• Stay grounded in syntax
• Think of mathematics in terms of design
• Find more focused questions and projects

• Strategies
• Look to mathematical practice
• Look to interactive theorem proving
• Look to the history of mathematics



Concluding remarks

We care about mathematics.

• We subject our children to countless hours of mathematical
training.

• We put a lot of faith in mathematical results.

• We applaud mathematical achievements.

The subject deserves philosophical study that helps us understand
what it means to do mathematics, and helps us do it better.



Concluding remarks

Strategy:

• Keep the general questions in mind.

• Find more precise, focused questions.

• Look to domains of application, such as
• formal verification and automated reasoning
• mathematical pedagogy and cognitive science
• history (and historiography) of mathematics
• mathematics itself

Over time, small but concrete advances will hopefully come
together to give us a coherent theory of mathematical
understanding.



Concluding remarks

And what if they don’t?

Then we will have merely contributed to the conceptual
foundations of automated reasoning, cognitive science, pedagogy,
history of science, and so on — and learned some interesting
things about mathematics as well.


