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At the beginning of the century, the idea of a function was a notion both too narrow
and too vague. ... It has all changed today; one distinguishes between two domains,
one is limitless, the other one is narrower but better-cultivated. The first one is that of
functions in general, the second one that of analytic functions. In the first one, all
whimsies are allowed and, every step of the way, our habits are clashed with, our
associations of ideas are disrupted; thus, we learn to distrust some loose reasoning
which seemed convincing to our fathers. In the second domain, those conclusions are
allowable, but we know why; once a good definition had been placed at the start,
rigorous logic reappeared.
In this passage from Poincaré’s 1898 eulogy of Weierstrass, the French mathematician gave
his version of the classical description of the rise of rigor in mathematical Analysis® in the
nineteenth century. Though the quotation is quite straightforward, two elements raise
questions. First, it is customary to associate vague ideas with limitless object-domains, and
precise definitions with clearly bounded object-domains®; conceptual clarification walks hand
in hand with domain-restriction. However, Poincaré described here the passage from a vague
to a distinct notion of function as walking hand in hand with domain-extension. Second, after
reading the last sentence, one would expect Poincaré to give this “good definition” which took
one century to emerge and whose emergence eventually put mathematical Analysis back on
the safer track of rigor. However, this definition is nowhere to be found in Poincaré’s paper
and, as we will see, this feature is in no way specific to Poincaré: the “function in general” is
not something one defines but something one points to; it is not an object to be studied but the
background on which objects can be studied. These topics will be discussed in the first part of
this chapter.
This first part will provide the background against which we will endeavor to delineate two
other historical interactions between generality issues and function theory in the nineteenth
century. We will first focus on the first years of the nineteenth century and use questions of
generality to attempt a comparison between two major treatises on function theory, that of
Lagrange and that of Cauchy. We will attempt to show how Lagrange and Cauchy chose
different strategies to take up the same three-fold generality challenge: to give a general
(uniform) account of the general behavior (that is, save for isolated values of x) of a general

! Au commencement du siécle, I’idée de fonction était une notion & la fois trop restreinte et
trop vague. ... Aujourd’hui tout est bien changé; on distingue deux domaines, I’un sans
limites, I’autre plus restreint, mais mieux cultivé. Le premier est celui de la fonction en
général, le second celui de la fonction analytique. Dans le premier, toutes les fantaisies sont
permises et a chaque instant nos habitudes sont heurtées et nos associations d’idées rompues ;
nous y apprenons ainsi a nous défier de certains raisonnements par a peu pres qui paraissaient
convaincants & nos peres. Dans le second, au contraire, ces conclusions sont permises ; mais
nous savons pourquoi ; il a suffi de placer au début une bonne définition ; et on a vu reparaitre
une rigoureuse logique. (Poincaré 1899: 4)

2 For the sake of clarity, we will systematically write « Analysis » with a capital A to denote
mathematical Analysis (function theory). Thus, we will present an analysis of Analysis.

® To prevent any misunderstandings: the objects referred to here are functions, the object-
domains are function classes or function-sets.



(non-specified) function. On the basis of the elements gathered in the first two parts of this
chapter, we will sketch a systematic comparison grid.

In the third part, we will concentrate on the end of the nineteenth century so as to show how
some mathematicians used the sophisticated point-set theoretic tools provided for by the
advocates of rigor to show that, in some way, Lagrange and Cauchy had been right all along:
counter-revolution, as we all know, is a synthesis of pre-revolutionary and revolutionary
elements. On the basis of the mathematical material covered in this third part, we will put
forward a new concept, that of embedded generality. Though we came across it in the context
of analysis, it is by no means specific to that context. We will argue that it captures an
approach to generality issues that is specific to mathematics and whose mathematical
treatment is a striking feature of twentieth-century mathematics.

Before we start, a few remarks on the nature of this chapter. To someone who usually works
as a historian of mathematics, it may appear somewhat quick-paced: the various contexts are
barely sketched; the collection of quotations displays a kind of imaginary dialogue between
mathematicians, regardless of actual historical connections. However, it must be
acknowledged that the main goal of this chapter is of an epistemological nature*, and that the
audience intended is not primarily that of historians. We aim at documenting ways of
expressing generality and epistemic configurations in which generality issues became linked
with other topics, be they epistemological topics such as rigor or mathematical topics such as
point-set theory. In this regard, we present and try to characterize three very specific
configurations: the first one evolving from Abel to Weierstrass, the second one in Lagrange’s
Treatises on analytic functions, the third one in Borel.

1. Generality, rigor, arbitrariness.
1.1 Abel’s letter to Hansteen.

We can start by reading an excerpt from one of Abel’s letter to his master Hansteen, written in

1826:
I shall devote all my strengths to shedding some light on the immense obscurity
which, at present, reigns over analysis. It is so devoid of plan and system that one is
astonished by the fact that so many people indulge in it — and, what is even worse, it
lacks rigor, absolutely so. In higher Analysis very few propositions are proved with
conclusive rigor. Everywhere, we come across the sorry habit of concluding from the
special to the general and, what is amazing is that, after such a procedure, one rarely
find what is called a paradox. The reason for that is indeed very interesting to think
over. The reason, to my mind, lies in the fact that most of the functions dealt with by
Analysis up to now can be expressed by powers. When other ones mingle with them,
which, admittedly, seldom occurs, we don’t do so well; were one to draw false
conclusions, from them would spring an infinity of tainted propositions, all standing
together. °

* Here we use the adjective « epistemological » with the meaning it has in the French
tradition, denoting what pertains to the theory of science and not what pertains to the theory of
knowledge in general.

> Je consacrerai toute mes forces a répandre de la lumiére sur I’immense obscurité qui régne
aujourd’hui dans I’analyse. Elle est tellement dépourvue de tout plan et de tout systeme, qu’on
s’étonne seulement qu’il y ait tant de gens qui s’y livrent — et, ce qui pis est, elle manque
absolument de rigueur. Dans I’ Analyse supérieure bien peu de propositions sont démontrées
avec une rigueur définitive. Partout on trouve la malheureuse maniére de conclure du spécial



This quotation nicely parallels that of Poincaré which we gave in the introduction: Poincaré
looked backward on a century-long process which Abel, among others, had kicked off. The
themes of rigor and generality are here beautifully intertwined, in a way which, to a large
extent, will prove stable throughout the nineteenth century. We need to distinguish between
two levels, the epistemic level and the object-level. On the epistemic level, this quotation is
famous for its ideal image of mathematics (or its image of ideal mathematics) as a set of
interrelated theorems: if one false assertion is mistakenly taken to be true, then the whole
network is tainted. As a consequence, the current lack of rigor in “higher Analysis” — that is
infinitesimal and integral calculus — is an outrage. But the situation described by Abel is a
paradoxical one. One the one hand, logic tells us that there might be false assertions in
analysis, since the usual mode of reasoning is in itself faulty: “concluding from the special to
the general”; mathematical truth cannot rely on induction. On the other hand, it appears that
there are not so many false assertions or pairs of contradictory assertions as one could expect:
the body of knowledge, however ill-founded, seems to be sound and safe. The reason for this
is sought for on the object-level: the objects mathematicians usually consider — Abel writes —
are functions of a special kind, namely functions which can be expressed as power series
(with positive and negative integer powers and, on occasion, fractional powers as well). On
this basis, two different lines of research can emerge, both of which require specific proof-
methods. One can either stick to the study of this special class of functions, or try to
understand how more general functions behave. To study the links between generality and
rigor we need to take a closer look at the second line of research, in which, as we shall see,
generality in the object-domain is expressed thanks to a notion of arbitrariness.

1.2 Investigating the generality of a theorem: Dirichlet 1829.

Our next landmark in the history of rigor in function theory is Dirichlet’s 1829 article Sur la
convergence des séries trigonométriques qui servent a représenter une fonction arbitraire
entre des limites données. Let us quote the final paragraphs of this fifteen-page article. The
flag of rigor is first waved, then the main result summarized:
The former considerations prove in a rigorous way that, if the function ¢(x), all values
of which are assumed to be finished and determined, shows but a finite number of
discontinuities between the limits -r and =, and, moreover, has but a definite number
of maxima and minima between these limits; series (7)°, the coefficients of which are
definite integrals depending on function ¢(x), is convergent and takes on a value
whose general’ expression is
2 [p(x+e) + o(x-¢)],
where ¢ stands for an infinitely small number.?

au genéral, et ce qu’il y a de merveilleux, c’est qu’aprés un tel procédé on ne trouve que
rarement ce qu’on appelle des paradoxes. Il est vraiment trés intéressant de rechercher la
raison de ceci. Cette raison, a mon avis, il faut la voir dans ce que les fonctions dont s’est
jusgu’ici occupée I’analyse, peuvent s’exprimer pour la plupart par des puissances. Quand il
s’y en méme d’autres, ce qui, il est vrai, n’arrive pas souvent, on ne réussit plus guére, et pour
peu qu’on en tire de fausses conclusions, il en nait une infinité de propositions vicieuses qui
se tiennent les unes les autres. (Abel 1892: 263)

® The Fourier series.

" In this context, « general » means for every value of x.

® Les considérations précédentes prouvent d’une maniére rigoureuse que, si la fonction ¢(x),
dont toutes les valeurs sont supposées finies et déterminées, ne présente qu’un nombre fini de
solutions de continuité entre les limites -x et &, et si en outre elle n’a qu’un nombre déterminé



This is what students still learn today as “Dirichlet’s theorem”: a 2x-periodic function which
is piecewise continuous and piecewise monotonous has a converging Fourier series (series (7)
in the quotation), whose limit is @(x) if ¢ is continuous at x, and, more generally, the mean
value of @(x) and ¢(x"). Obviously, the theorem says nothing about the “arbitrary function”,
quite the contrary: the hypotheses under which the conclusion has been proved to hold are
painstakingly spelled out, which is exactly what being rigorous means. This theorem took ten
pages to prove, and each of the hypotheses played a part in at least one step of the proof. One
interpretation could be that Dirichlet managed to prove that, contrary to what Fourier had
assumed, arbitrary (periodic) functions — that is any periodic function, whether encountered in
a purely mathematical context or in a context of mathematical physics — cannot be represented
by a trigonometric series ... end of the story. The end of Dirichlet’s paper shows that it is not
quite so:

We still have to investigate the cases in which what we have assumed as to the

number of discontinuities and that of maxima and minima ceases to be the case. °
Dirichlet managed to prove the conclusion under some hypotheses which emerged in the
proof, but acknowledged the fact that this conclusion may hold under weaker hypotheses.
Another way of saying this (but we should notice that Dirichlet never spoke of function
classes or function sets) is: this theorem asserts that a given property is valid for some object-
domain, but it is likely that this object-domain can be extended; it is likely — or at least worth
investigating — that the conclusion is still valid for more general functions. The end of
Dirichlet’s paper pointed to two ways of exploring the generality of the conclusion, that is, the
extent of the domain of objects for which it holds. Dirichlet first wrote that the proof could be
amended for functions with an infinite number of discontinuities as long as the set of points of
discontinuities is nowhere dense (in modern parlance)™. The latter restriction came from the
fact that the coefficients of the Fourier series are integrals involving a function ¢, and that the
very notion of an integral becomes meaningless if restrictions are not put on the set of points
of discontinuity. We can see that, in order to asses the generality of a conclusion which he had
established under what he felt to be too strong hypotheses, Dirichlet first resorted to proof
analysis™, but this proof analysis led him to the analysis of a mathematical concept, that of
integrable function. In this 1829 paper, he merely pointed to this concept analysis as a
research program: “But, doing things with as much clearness as one can wish for demands
that one go into some details as to the fundamental principle of infinitesimal analysis; these
details will be expounded in a further note ...” *2. A few lines above, Dirichlet used a different
strategy to explore the generality of the property. Instead of pointing to the general concept of
the integral and a possible weakening of the hypotheses under which integrability can be

de maxima et de minima entre ces mémes limites, la série (7), dont les coefficients sont des
intégrales définies dépendant de la fonction ¢(x), est convergente et a une valeur
généralement exprimeée par : %2 [p(x+g) + ¢(x-g)], ou & désigne un nombre infiniment petit.
(Dirichlet 1829: 168)

% II nous reste & considérer les cas oU les suppositions que nous avons faites sur les nombre de
solutions de continuités et sur celui des valeurs maxima et minima cessent d’avoir lieu.
(Dirichlet 1829: 168)

19 \We need not discuss here the relevance of this integrability condition.

1 Our analysis of Dirichlet’s move is, of course, very close to Lakatos’ (Lakatos 1976: 148-
149).

12 Mais la chose, pour étre faite avec toute la clarté qu’on peut désirer, exige quelques détails
lies aux principes fondamentaux de I’analyse infinitésimale et qui seront exposés dans une
autre note ... . (Dirichlet 1829: 169)



ascertained, he gave an example of a function that is too arbitrary to belong to the maximal
object-domain for which the conclusion holds, more precisely, too arbitrary to be integrable:
One would get an example of the function which doesn’t fulfil this requirement if one
assumed that ¢(x) equalled some determined constant ¢ when variable x takes on a
rational value, and equalled some other constant d when the variable is irrational. **
This strange function had not until then been considered in mathematical Analysis; it had not
turned up so far, whether in pure mathematics or in mathematical physics. This display of a
specific function is an element of a new mathematical configuration in function theory, a
configuration which also encompasses epistemic values such as “rigor”, epistemic practices
such as proof-analysis, but also strictly mathematical elements such as the exploration of the
various properties of points sets on the real straight line. The “Dirichlet moment” in the theory
of Fourier series is perfectly characterized by Riemann in his 1854 dissertation on the same
topic:
The works on this question which we have so far mentioned endeavored to establish
the Fourier series for those functions which are encountered in mathematical physics;
thus, one could start the proof for completely arbitrary functions and, then, put any
restriction as to the course of the function as were necessary for the proof, so long as
these restrictions don’t go against the purpose. *
We need not remind the reader that Riemann was Dirichlet’s student and that the goal of this
1854 dissertation was to fulfil the research program which Dirichlet had sketched at the end of
his 1829 paper.

1.3 Expressing generality through arbitrariness

Before studying further the specific links between generality, rigor and arbitrariness in this
new mathematical practice, we need to pay more attention to the way general/arbitrary
functional objects were referred to by mathematicians. We shall distinguish between three
modes of expression.

1.3.1 Referring to.

From its emergence as an autonomous mathematical concept in the eighteenth century, an
element of arbitrariness had always been part of the function concept, however quickly the
concept may have been sketched. As for functions which turned up in purely mathematical
contexts, they could be either formed by the free juxtaposition of symbols (a freedom subject
to syntactic constraints, however) or given (in the case of continuous functions) by a freely
drawn plane curve. Both ideas were to be found in Euler’s 1748 Introductio in Analysin
Infinitorum, in the first and second part respectively, but they were nothing more than a way
of introducing the reader to the kind of mathematical situations that they will be taught to

13 On aurait un exemple d’une fonction qui ne remplit pas cette condition, si I’on supposait
¢(x) egale a une constante déterminée c lorsque la variable x obtient une valeur rationnelle, et
égale a une autre constante d, lorsque cette variable est irrationnelle. (Dirichlet 1829: 169)

% We will use “practice” instead of “configuration” when we assume a more agent-based
approach.

!> Die bisherigen Arbeiten tiber diesen Gegenstand hatten den Zweck, die Fourier’sche Reihe
fur die in der Natur vorkommenden Falle zu beweisen; es konnte daher der Beweis fiir eine
ganz willkurlich angenommene Function begonnen, und spéter der Gang der Function behuf
des Beweises willkirlichen Beschrankungen unterworfen werden, wenn sie nur jenen Zweck
nicht beeintrachtigen. (Riemann 1892: 244)



handle. Questions of generality and arbitrariness were neither central nor even marginal in
this context. In mathematical physics however, the theory of vibrating strings and the
subsequent development of Fourier theory placed the question of the mathematical description
of the “arbitrary function” (fonction arbitraire) — describing a physical phenomenon — on the
center stage, as we saw earlier.
In terms of vocabulary, throughout the nineteenth century, “arbitrary function” remained very
much in use: in Fourier’s 1822 Théorie analytique de la chaleur, in Dirichlet’s 1829 paper. In
his 1837 paper, Dirichlet used the German translation “willkurlich” (arbitrary) and, as if
“arbitrary” would not convey the idea with sufficient strength, sometimes used “ganz
willkdrlich” (completely arbitrary); he also wrote “ganz gesetzlos” (completely lawless). The
same words were to be found in Riemann’s 1854 paper: “willkirlich”, “ganz willkirlich”,
sometimes “ohne besondere Voraussetzungen (iber die Natur der Function”*® (without any
specific hypothesis as to the nature of the function). In his 1875 paper on the classification of
functions, Paul du Bois-Reymond turned it into a adjective: “die voraussetzungslose
Function” (the hypotheses-free function). The very same year, in France, “arbitraires” was
replaced by “les plus générales” (most general) in Darboux’s Mémoire sur les fonctions
discontinues. The opening paragraph reads:
At the risk of being too long, | was set on being rigorous, perhaps without full success.
Many points which would justly be considered obvious or would be granted in the
applications of science to usual functions [fonctions usuelles], have to undergo
rigorous criticism when it comes to expounding the propositions pertaining to the most
general functions."’

1.3.2 Describing

The easiest way to describe a general/arbitrary function is to negate a property which you feel
to be specific. For instance, in his 1837 paper, Dirichlet shortly explained what his “gesetzlos”
meant: “it is by no means necessary to assume that the dependence [between the function and
the variable] is expressible with mathematical operations” *2; here, Dirichlet negated one of
the two standard descriptions of what a function is. In the same paper, Dirichlet pointed to
arbitrariness by negating another property which is usually (more or less implicitly) assumed:
usual functions (in modern parlance: analytic functions) are completely determined by their
behavior in any interval belonging to their domain of analyticity (uniqueness of analytic
continuation); thus for an arbitrary function, “so long as one has determined the function for
only a part of the interval, its continuation for the rest of the interval remains completely
arbitrary.”*

Alongside the negation of a property encountered in usual functions, more positive
descriptions can be found. Here, a generic mode of description was used. The standard one, at

18 The 20™ century German spelling would be « Funktion ».

7 Au risque d’étre trop long, j’ai tenu avant tout, sans y réussir peut-étre, & étre rigoureux.
Bien des points, qu’on regarderait & bon droit comme évidents ou que I’on accorderait dans
les applications de la science aux fonctions usuelles, doivent étre soumis a une critique
rigoureuse dans I’exposé des propositions relatives aux fonctions les plus générales. (Darboux
1875: 58)

® man braucht nicht einmal an eine durch mathematische Operationen ausdriickbar
Abhéangigkeit zu denken (Dirichlet 1889 135)

19's0 lange man uber eine Function nur fir einen Theil des Intervalls bestimmt hat, bleibt die
Art ihrer Fortsetzung fiir das ubrige Intervall ganz der Willklr Gberlassen. (Dirichlet 1889:
136)



least for continuous function, remained that of the arbitrarily drawn curve: in spite of the
radical change in epistemic configurations, the description remained stable from Euler to
Dirichlet and Riemann (e.g. “the arbitrary (graphically given) functions”® in Riemann). A
significant change occurred in 1875 in du Bois-Reymond’s paper on the classification of
arbitrary functions; to introduce the most general function concept, that of the function “on
which no hypotheses are made”, he discarded the classical “arbitrary curve” image (suited for
continuous functions only):
l. The hypotheses-free function.
In the case where no specific determination presents itself, the mathematical function
is a table — similar to an ideal logarithmic table, thanks to which to any specified
numerical value of the independent variable, one or several functional values — or one
indeterminate but between limits given in the table — is associated. No horizontal row
of the table has any influence on any other, that is, each and every value in the column
which displays the values of the function stands by itself and may be altered; such an
alteration would not prevent the column from representing a mathematical function.
The mathematical concept of functions holds nothing more (nothing less either); it is
thus fully exhausted. %
By a strange turn of events, one of the standard modes of description for the most classical
and specific functions — one which pre-dates by centuries the emergence of the function
concept — is used to express how a general function can be given: when dealing with usual
functions such as logarithms or sines, tables of values are commonly used; a general function
can be given by a similar table, but an “ideal table”, in which every value is completely
independent from the others (which is, of course, reminiscent of the negation of the
uniqueness of continuation). With this generic description, du Bois-Reymond was close the
twentieth-century concept of a map between sets, though he didn’t require that two sets be
declared beforehand.

1.3.3 Exemplifying.

Exemplifying the general: the endeavor sounds paradoxical. Following Nelson Goodman, we
shall say that to be displayed as a sample, an “object” has to both possess and denote (or refer
to) a property *°. Thus, a sample of generality is a contradiction in terms, since no individual
object — be it of a usual or of an extraordinary kind — can posses the property of being
general. However, in the epistemic configuration which links generality, rigor and
arbitrariness in nineteenth-century function theory, mathematicians pointed to generality by
displaying examples; we saw one of the first instances in Dirichlet’s 1829 paper, with the
example of (to rephrase) the indicatrix of the set of rational numbers within the set of real

20 die willkirlichen (graphisch gegebenen) Function. (Riemann 1892: 227)

2 |. Die Voraussetzunglslose Function. Die mathematische Function, falls keine besondere
Bestimmungen fir sie vorliegt, ist eine den Logarithmentafeln &hnliche ideale Tabelle,
vermoge deren jedem vorausgesetzten Zahlenwerthe der unabhdngige Veranderlichen ein
Werth oder mehrere, oder ein zwischen Grenzen, die in der Tabelle gegeben sind,
unbestimmter Werth der Function zugehort. Keine Horizonalereihe der Tabelle had irgend
einen Einfluss auf die anderen, d.i. jeder Werth in der Columne der Functionalwerthe besteht
fur sich und kann fir sich geéndert werden, ohne dass die Columne aufhort eine
mathematische Function darzustellen.

Mehr enthalt der Begriff der mathematischen Function nicht und auch nicht weniger, er ist
damit vollig erschdpft. (du Bois-Reymond 1875: 21)

22 (Goodman 1976: 53)



numbers. The exemplification tactics differed in a striking way from the two we have
described so far. When it came to referring or describing what a function of the most general
type could be, mathematicians strove for the least specific (whether by negating common but
specific properties or by describing generic templates to be filled arbitrarily). When examples
are to be displayed in order to point to the general, the more specific the example, the more
successful the denotation. We need not go into the details of the history of “pathological”,
“bizarre” (Borel), “amusing” (“drolatiques” in Darboux®®) functions; let us just mention
Riemann’s example of a (Riemann-)integrable function whose set of discontinuities is dense
(1854), Weierstrass® continuous but nowhere differentiable function (1872) and Hankel’s
monster-function producing process (based on his “principle of condensation of
singularities™) %,

1.4 Arbitrary functions: what for ?

Examples of functions with extraordinary properties are sometimes used as counter-examples,
but their display can fulfil other purposes. The mere displaying of the “monster” reveals a
new and unexpected feature of the function-world. Geometric intuition is the first victim of
this display:
Indeed, the existence of the derivative in a continuous function f(x) is reflected
geometrically by the existence of a tangent line at any point of the continuous curve
which is the geometric image of this function; and, though it is possible for us to
conceive that at some singular points, even very close one to the other, the direction of
the tangent line be parallel to the x-axis or to the y-axis, or even completely
indeterminate, we cannot conceive that it be so in every arc of the curve, however
small it may be taken. Hence the tendency to consider it unnecessary to prove the
existence of the derivative in a continuous function. %
This quotation, by Belgian mathematician Gilbert, is also here for the sake of irony: Gilbert is
(somewhat) famous for his attempt to prove that a continuous function is piecewise
differentiable, the very same year Weierstrass displayed (in the Berlin Academy of Science)
his nowhere differentiable continuous function ! In this passage, his goal was to remind the
reader that intuition is no adequate ground for mathematical knowledge and that,
consequently, this differentiability property called for a proof in spite of its intuitive nature; he
certainly didn’t mean to underline the deceiving nature of geometric intuition when general
(continuous) functions were being considered. It has to be noted that, contrary to the first
examples such as the indicatrix of Q, Weierstrass’ function is highly sophisticated: you don’t
just come across it, and once the formula is written down it still takes skilful mathematical
work to establish the nowhere differentiability ... like rare and exotic butterflies, monster-
functions can be hard to track down. The know-how in the monster-making business is
definitely a part of the mathematical practice which we’re endeavoring to delineate.
More generally, the display of specific functions with unusual properties is a tool for the
assessment of the generality of a given statement. For instance, the example of the indicatrix
of Q showed that the Fourier-series development process is not universally valid: the theorem
proved in 1829 established its validity for a given (presumably not maximal) class of
functions, and the example showed that the maximal class couldn’t be all-encompassing. The
display of the monster helped point to the task of identifying the exact contours of the right

2% Quoted in (Gispert 1983: 83)

24 For an analysis of nineteenth-century teratology (i.e. science of monsters) in function
theory, see for instance (Volkert 1987)

%> Quoted in (Volkert 1988: 218). My translation.



function-class. On a more general level, we endorse Klaus Volkert’s interpretation of the
monster-displaying business 2 pathological functions served as milestones for the
extensional exploring of the function-world. We can read an explicit description of this way
of charting the function-world in du Bois-Reymond’s paper:
First come a number of conditions satisfied by a function over a whole interval —
however small; each of the conditions in the series restricts the function ever more, so
that every former function classes encompasses all the following ones — with functions
always assumed to be finite. 2’
Fifty years after Abel’s lament about the complete lack of “plan” and *“system” in
mathematical Analysis, a form of systematicity had emerged: functions are grouped in
classes, function classes are characterized by explicit (set-theoretic) properties; logical
implications between properties (on the intentional level) are reflected on the extensional
level by inclusion relations between function classes. This systematic way of charting the
world of functions is typical of du Bois-Reymond’s work (arbitray functions o integrable
functions > continuous functions o differentiable functions) or of Camille Jordan’s Traité
d’Analyse %, whose second edition is a landmark in the history of “rigorous” analysis.
This interpretation also helps us understand the role of the “arbitrary function”. As du Bois-
Reymond strikingly put it, the “most general” function, the *“arbitrary function”, the “function
on which no hypotheses is made” is something about which nothing can be said®. It is by no
means an object to be studied, it is but an (intentionally) empty place in the whole epistemic
configuration: not something to investigate, but a kind of background against which ever
more specific function classes can be delineated; meaningless (on the intentional level)
because all-encompassing (on the extensional level). This interpretation also helps us clarify
the relationship between the general/arbitrary function and the pathological examples. Both
are necessary elements of the same epistemic configuration, which doesn’t mean that
pathological functions serve as samples for the class of arbitrary functions — a part which, as
noted earlier, no example can play.

Class of (arbitrary) functions

26 (Volkert 1987)

2" Es gibt zuvorderst eine Anzahl von Bedingungen, die fir ein ganzes wenn auch beliebige
kleines Intervall einer Function gelten, und von denen jede folgende die Function immer mehr
einschrankt, so dass jede vorhergehende Klasse von Functionen alle folgenden enthélt, wobei
die Function durchweg endlich angenommen werden. [du Bois-Reymond 1875: 21]

28 (Jordan 1991)

2° As mentioned earlier, du Bois-Reymond’s general function concept is close to the abstract
map concept but differs slightly. Things can be studied in an abstract map: is it one-one, is it
onto etc. du Bois-Reymond fails to see these questions since the sets between which the map
works are still implicit in his approach to the general function concept.



A few years later, the same charting of the function-world was used by Hilbert in his famous
1900 Paris address. Before expounding the last series of problems (pb. 19-23), a series
devoted to problems in mathematical analysis, he discussed the relevance of various function
classes; let us just read the first few lines, a wonderful sample of this fine tuning of the
relevant class within the new “system” of functions:
If we look over the development of the theory of functions in the last century, we
notice above all the fundamental importance of that class of functions which we now
designate as analytic functions — a class of functions which will probably stand
permanently in the center of mathematical interest.
There are many different standpoints from which we might choose, out of the totality
of all conceivable functions, extensive classes worthy of a particularly thorough
investigation. Consider, for example, the class of functions characterized by ordinary
or partial algebraic differential equations. It should be observed that this class does not
contain the functions that arise in number theory and whose investigation is of the
highest importance. ...
If, on the other hand, we are led by arithmetical or geometrical reasons to consider the
class of all those functions which are continuous and indefinitely differentiable, we
should be obliged in its investigation to dispense with that pliant instrument, the power
series, and with the circumstance that the function is fully determined by the
assignment of values in any region, however small. While, therefore, the former
limitation of the field of functions was too narrow, the latter seems to me too wide. *

2. General theory as a theory of the general behavior of a function: Lagrange and
Cauchy.

Going backward in time and focusing on texts which don’t belong to the epistemic
configuration that we studied earlier, we come across another lead: other links between
questions of generality and the historical development of mathematical Analysis in the
nineteenth century appear. We will thus follow two leads at a time: on the one hand, we will
try to characterize the various ways in which Lagrange’s grasp of the world of functions
differs from the one we described in the former paragraph, thus delineating two (ideal)
mathematical configurations; on the other hand, we will come across a new conceptual
intersection between questions of generality and the theory of function: once a function is
given, one can try to distinguish between a general behavior (to be studied in a uniform way)
and points where the behavior is singular (to be investigated later, with specific tools). We
will see that this idea of general behavior of a function is common to both Lagrange and
Cauchy, but treated in very different ways by these mathematicians: we think this point of
comparison is quite illuminating and helps understand some of the peculiarities of Cauchy’s
concept of continuity.

2.1 Scenes from Lagrange’s Théorie des fonctions analytiques.®

The introduction to Lagrange’s treatise is entitled “des fonctions en général” (on functions in
general):

%0 (Hilbert 1902: 467)

1 As the title of this paragraph indicates, we certainly do not mean to give an overview of
Lagrange’s work and its relationship to questions of generality in mathematics or
mathematical physics. For a detailed study of the conceptual architecture of Lagrange’s
Théorie des fonctions analytiques, see (Ferraro and Panza).
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One calls function of one or several quantities any calculating expression in which
these quantities appear in any way, along with other quantities which are considered to
have given fixed values, in contrast to the quantities in the function which may take on
any possible values. ... The word function was used by the first analysts to denote
generally the powers of a given quantity. Since then, the meaning has been extended to
any quantity formed in any way from another quantity. *

As mentioned earlier, an element of arbitrariness is present in Lagrange’s function concept,
but as a part of a very different configuration. The distinction between axiomatic and genetic
definitions can help us contrast Lagrange against, say, du Bois-Reymond. Du Bois-Reymond
needed a definition (or, at least, a template) for the most general/arbitrary function; this
concept had maximal extension and minimal intention, but was necessary for the definition of
more interesting function classes in terms of characteristic properties: the most general
function - this nondescript element of the class of all functions — was the starting point for
the systematic exposition of mathematical Analysis. The notion of function in Lagrange is a
genetic one: the basic, simple elements are known (letters standing for variable quantities) and
they are to be combined at will to form any function you like; of course, the free combination
of symbols has to remain within certain syntactic bounds, but for those as well only the most
simple ones are known (namely, the general rules of algebra and maybe the symbols for the
derivative, the partial derivative and the integral): just as new functions can be formed, it is
quite possible to add new syntactic structures. There is no need in Lagrange for a definite
criterion enabling us to distinguish between functions and non-functions, no need to precisely
delineate the outer rim of the function world. Quite the contrary, the function world is an
open-field; generality, a mere horizon. The challenge is to find a systematic way to study
these functional objects, of which the basic elements (in generic terms) but not the basic
properties (in axiomatic terms) are known.

Lagrange met this challenge by resorting to a general mode of description, a general “form”:
Let us consider therefore a function f(x) of any variable x. If x is replaced by x+i, i
being any indeterminate quantity, the function becomes f(x+i) and, thanks to the
theory of series, it will be possible to develop it into a series of the following type

f(x) + pi +qi® +ri*+...,
in which quantities p, q, r..., the coefficients of the powers of i, are new functions of x,
derived from the primitive function of x and independent of indeterminate i. >

Whatever the form of f(x), seen as an formula in which x appears, it can be written in the

universal form of a power series. The generality strategy is clear, but the claim remained to be

ascertained:

32 On appelle fonction d’une ou de plusieurs quantités toute expression de calcul dans laquelle
ces quantités entrent d’une maniere quelconque, mélée avec d’autres quantités qu’on regarde
comme ayant des valeurs données et invariables, tandis que les quantités de la fonction
peuvent recevoir toutes les valeurs possibles. ... Le mot fonction a été employé par les
premiers analystes pour désigner en général les puissances d’une méme quantité. Depuis, on a
étendu la signification de ce mot a toute quantité formée d’une maniére quelcongque d’une
autre quantité ... (Lagrange 1813: 15)

% Considérons donc une fonction f(x), d’une variable quelconque x. Si & la place de x on y
met x+i, i étant une quantité quelconque indéterminée, elle deviendra f(x+i), et, par la théorie
des séries, on pourra la développer en une série de cette forme f(x) + pi + qi® + ri*+... ,dans
laquelle les quantités p, g, r ..., coefficients des puissances de i, seront de nouvelles fonctions
de x, dérivées de la fonction primitive de x et indépendantes de I’indéterminée i. (Lagrange
1813: 21)
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But to avoid advancing anything gratuitously, we shall examine the very form of the
series which is to represent the development of any function f(X) when x+i is
substituted for x and in which we have assumed only positive, whole powers of x
appear. This requirement is indeed met be the development of the various known
functions; but no one, to my knowledge, has ever tried to establish it a priori, what
seems ag!1 the more necessary since there are particular cases in which it might fail to
be met.
According to Lagrange, a proof for the generality of the property is all the more needed since
counter-examples were known ... it could be the oddest justification for the need of a general
proof ever given ! This quotations reveals a feature of the epistemic configuration to which
Lagrange belongs, a feature that we haven’t encountered so far:
I will first prove that, in the series which results from the development of function
f(x+1), no fractional power of i can appear, unless x takes on some particular values. ...
This proof is general and rigorous as long as x and i remain indeterminate; it would
cease to be so if x took on determinate values ... . We will later (chap. V) deal with
these particular cases and their consequences. *
The relevant distinction is that between “indeterminate” and “determinate” values: a function,
or, more generally, a variable quantity, is an object of complex nature. A variable quantity,
denoted by a letter, stands for any possible particular value (potential level), and may be given
any values (actual level). But, for Lagrange, the use of letters is not a mere shorthand, a way
to denote any particular number; there is an autonomous level on which indeterminate
quantities are to be dealt with, a level whose autonomy is often referred to by bringing up the
“generality of algebra” (la généralité de I’algebre). The theorem establishing the generality of
the power-series form belongs to this theoretical level, regardless of the actualization (or
specialization) of the variable quantity as a number. Yet, this autonomous level is by no
means an independent level; properties proved at the “generality of algebra”-level (let’s call it
level A) have an implicit counterpart on the “determinate value”-level (level B), as we shall
see more clearly by reading the paragraph in which Lagrange deals with his “particular
cases”. The complete title of Lagrange’s Chapter V reads: “On the development of functions
when the variable takes on a determinate value. Cases in which the general rule fails to apply.
On the values of those fractions whose numerator and denominator vanish simultaneously. On
the singular cases in which the development of the function fails to proceed according to the

% Mais pour ne rien avancer gratuitement, nous commencerons par examiner la forme méme
de la série qui doit représenter le développement de toute fonction f(x) lorsqu’on y substitue
x+i a la place de x, et que nous avons supposée ne devoir contenir que des puissances entiéeres
et positives de i.

Cette supposition se vérifie en effet par le développement des différentes fonctions connues ;
mais personne, que je sache, n’a cherché a le démontrer a priori, ce qui me parait d’autant
plus nécessaire, qu’il y a des cas particuliers ou elle ne peut pas avoir lieu. (Lagrange 1813:
22)

% Je vais d’abord démontrer que, dans la série résultante du développement de la fonction
f(x+i), il ne peut se trouver aucune puissance fractionnaire de i, @ moins que I’on ne donne a x
des valeurs particuliéres. ... Cette démonstration est générale et rigoureuse tant que x et i
demeurent indéterminés ; mais elle cesserait de I’étre si I’on donnait & x des valeurs
déterminées ... . Nous examinerons plus bas (Chap.V) ces cas particuliers et les conséquences
qui en résultent. (Lagrange 1813: 22)
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positive and whole powers of the increment to the variable.” ®. Let us just quote the first few
lines:
The methods given so far for the development of function f(x+i) rest on the

assumption that the form of this development is
£ 2

f(x)+if'(x)+|? FrX) 4o

it is thus necessary, before we proceed further, to study why and when this form could
fail to appear. We showed earlier (n°2) that it may only be the case when x is given a
determinate value which causes some radical to vanish in function f(x) and in all its
derivatives. Now, there are only two ways for a radical to vanish, either because the
quantity by which the radical is multiplied vanishes, or because the radical itself
vanishes. ¥

To explain what he meant, Lagrange used the example of function f(x) = (x —ahx—b.Ifwe

draw the curve for a =2 and b = 1 (which Lagrange didn’t do), we get:

/
/

\
\

% Du développement des fonctions lorsqu’on donne a la variable une valeur déterminée. Cas
dans lesquels la regle générale est en défaut. Des valeurs des fractions dont le numérateur et le
dénominateur s’évanouissent en méme temps. Des cas singuliers ou le développement de la
fonction ne procéde pas selon les puissances positives et entieres de I’accroissement de la
variable (Lagrange 1813: 57)

3" Les méthodes que nous venons de donner pour le développement de la fonction f(x+i)
supposent que ce développement est de la forme

i2
I

f(x)+if'(x)+E £ (x)+...;

il est donc nécessaire, avant d’aller plus loin, d’examiner quand et comment cette forme
pourrait étre en défaut.

Nous avons déja montré plus haut (n°2) que cela ne peut arriver que lorsqu’on donnera a x
une valeur déterminée telle qu’elle fasse disparaitre dans la fonction f(x) et dans toutes ses
dérivées quelques radicaux. Or un radical ne peut disparaitre dans une fonction que de deux
manieres, ou parce que la quantité qui multiplie le radical devient nulle, ou parce que le
radical lui-méme devient nul. (Lagrange 1813: 57)
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One has to remember that for Lagrange, the square root function is two-valued; for instance, 4
has two square roots, 2 and —2, which explains the symmetry of the curve. The function has
two singular values, value x = 2 for which “the quantity by which the radical is multiplied
vanishes” and value x = 1 for which “the radical itself vanishes”. In this paragraph, Lagrange
showed the reader how the development of f(x+i) can be found if x = 1 or 2, with power series
featuring negative and fractional powers of i: a more general form (meaning: the usual form is
a particular case) is needed to deal with singular values, that is to reach universality on the B-
level (the extended form is valid for any values of x); the “general rule” was general because
it “lived” on the A epistemic level, and®, because it was generally valid on the B-level, that is
for all but singular (i.e. isolated on the straight line and singular for the specific function
under study) values of x.

It is also worth commenting upon the generation and use of examples in Lagrange’s treatise.
Function f(x) = (x—a}\/x—b is clearly the simplest case showing both types of singular
behaviors: Lagrange didn’t set out to chart a closed functional world using point-set
properties, but formally generated functions from the most simple elements. In the “rigorous”

configuration that we studied in the first part of this chapter, simplicity was irrelevant (though
not necessarily ill-considered); here, it is of the essence. The use of examples also differs. The
case of f(x) = (x—a}«/x—b doesn’t support any general statement, its role is pedagogical: it
helps the reader spot the potentially singularity-bearing forms, and teaches her how to deal
with them. Its simplicity makes it both a paradigm (to be used as a model) and a generic
example: in a generically-structured open function-world, dealing with the simplest of all
singular cases is the most obvious (if not the only possible) general move; anything that can
be said about one of the basic building-blocks is of general interest.

2.2 Two mathematical configurations.

Let us use a table to summarize some of the elements of comparison that we have come across
so far, and add a few others as well. For the right column, I chose Camille Jordan as a
representative for the “rigorous” configuration in its mature form: his 1890s Cours d’Analyse
is a standard landmark, in which the works of Dirichlet, Riemann, Weierstrass, Heine, du
Bois-Reymond and Dini are reflected. Needless to say this table is just a rough sketch, but
rough sketches can prove illuminating at times. This one might not be; we hope it fuels
reflection though.

Lagrange Jordan
1 Genetic description, bottom-up journey | Axiomatic definition, top-down journey in
across an open function-world a closed function-world
2 Elementary functions as starting point General functions as starting point

3 Classification  of  formulae/functions | Classification of maps/functions according
according to form, differential diagnosis|to (point-set) properties, delineation of
helping you make out the variety of|function classes

function types

4 Generality derives from simplicity (proper | Generality derives from rigor (careful
identification of the most simple and|wording of hypotheses, counter-example-
elementary forms) proof statements, detailed proofs)

38 Behind this « and » lies the whole dialectic between the two levels. We can but touch here
on this fascinating topic.
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5 Examples are simple cases which teach | Examples are mainly counter-examples,
you how to deal with whatever you may |they both illustrate and motivate the
come across out there lengthy hypotheses and mind-boggling

conceptual distinctions

6 In terms of genre, the book is both a|lIn terms of genre, the book is first and

treatise and a textbook. foremost a treatise.*®

7 Concept image (for the function concept) | Concept definition

8 Convince oneself, convince a friend Convince an opponent

The first 5 points summarize things said earlier.
In points 7 and 8 we borrow concepts from the didactics of mathematics. The distinction
between concept image and concept definition comes from the work of M. Tall and S. Vinner
on the psychology of mathematical learning:
We shall use the term concept image to describe the total cognitive structure that is
associated with the concept, which includes all the mental pictures and associated
properties and processes. It is built up over the years through experiences of all kind,
changing as the individual meets new stimuli and matures. *°
The concept image is a much larger and piecemeal cognitive structure than the concept
definition (that is, the formal definition, if there is one). To succeed in mathematics, at least in
higher education, a student has to display some degree of cognitive flexibility, enabling her to
switch from concept image to concept definition in some cases (say, to write down a proof) or
the other way round in other cases (say, to devise an easy counter-example to a false
statement); in the worst cases, the concept definition is not included in the concept image: the
definition may be learnt by rote, still it means nothing to the student. As for the function
concept, we saw that hard and fast definitions were rarely found until the second half of the
nineteenth century. The few lines of explanation which can be read in the first paragraphs of
Euler, Lagrange or Lacroix’s treatises are not meant as definitions on which proofs can be
based, they’re description of what can be called functional dependence, a description that has
to be vague enough so as to be fitted out to anything that might come up in mathematics and
mathematical physics. Lacroix put it bluntly: after his short explanation of the word

% The question of genres, their historical evolution and epistemological implication, is in
itself well-worthy of study; we are not going into that here. We are simply referring to a
growing tension between “mathematics for professional mathematicians” and mathematics for
non-mathematicians (engineers, physicists, maths-teachers or undergraduate students) through
the nineteenth century. In his 1893 series of talks on the occasion of the Chicago World’s fair,
Klein stressed this problem: “Now, just here a practical difficulty presents itself in the
teaching of mathematics, let us say of the elements of differential and integral calculus. The
teacher is confronted with the problem of harmonizing two opposite and almost contradictory
requirements. On the one hand, he has to consider the limited and as yet undeveloped
intellectual grasp of his students and the fact that most of them study mathematics mainly
with a view to practical applications; on the other, his conscientiousness as a teacher and man
of science would seem to compel him to detract in nowise from perfect mathematical rigour
and therefore to introduce from the beginning all the refinements and niceties of modern
abstract mathematics. ... The second edition of the Cours d’analyse of Camille Jordan may be
regarded as an example of this extreme refinement in laying the foundations of infinitesimal
calculus.” (Klein 1894: 49).

0 (Tall and Vinner 1981: 152)
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“function”, he added: “the use of this word will throw light on its meaning” *

image.
Point 8 comes from Mason, Burton and Stacey’s Thinking mathematically *2, when reflecting
on the function of proof. You can try to write down a proof in order (1) to convince yourself
of some mathematical fact (2) to convince a friend or a student, someone of good will but in
need of some kind of explanation (3) to convince someone who assumes a systematically
skeptical posture, someone who will look for flaws in every step of your reasoning. The
proofs in Lacroix and Lagrange are, to some extent, of the first and second kinds. In the
1890s, Jordan’s treatise presents a coherent system of subtle definitions and detailed proofs;
those proofs and definitions are the result of 70 years of co-evolution of proofs and concepts
in mathematical Analysis, an evolution triggered by fierce proof-analysis and counter-
example devising®. This know-how in proof-design accumulated as a result of the assumption
of the “opponent” role by prominent mathematicians, as is exemplified in this passage from
one of Abel’s letters to his friend Holmboe (1826):
I doubt you will be able to put forward more than a small number of theorems dealing
with infinite series, to the proof of which I can’t object with good grounds. Do that,
and I shall answer you. **
The friendly tone of this letter shows very clearly that this epistemic posture has nothing to do
with personal enmity or scientific controversy.

... pure concept

2.3 Cauchy’s concept of continuity as the answer to a generality challenge.

From a historical point a view, the lectures which Cauchy gave at the Ecole Polytechnique in
the early 1820s should provide a missing link between the two configurations. On the one
hand, they can be analyzed as a globally anti-Lagrangian move, and had a profound influence
on the pioneers of the new epistemic style, Abel and Dirichlet. On the other hand, Cauchy
shared with Lagrange some basic views as to what functions were, as to the role of singular
points etc. which paint a picture of the function world in sharp contrast with what we
described in the first part of this chapter. We think the depiction of Cauchy as an in-between
figure — in-between two coherent epistemic configurations — helps makes sense of his
somewhat puzzling concept of continuity.
We need not expatiate on the first point (the “down with Lagrange” part); quoting the famous
introduction to I’Analyse algébrique (1821) will suffice:
As to the methods, | strove to give them the very rigor that is demanded in Geometry,
S0 as to never resort to arguments based on the generality of Algebra. It seems to me
that this kind of arguments, though quite commonly acknowledged, most of all when
passing from finite to infinite series, and from real to imaginary expressions, can be
considered but mere induction; this kind of induction can help sense some truth but is
not in keeping with the praised rigor of the mathematical science. It has to be noted
that they led us to ascribe an indefinite scope to algebraic formulae whereas, in reality,

* |"usage de ce mot en éclairera la signification (Lacroix 1867: 1)

%2 (Mason 1982)

3 See (Volkert 1987) or the appendices in (Lakatos 1976).

* Je crois que tu ne pourras me proposer qu’un trés petit nombre de théorémes contenant des
séries infinies, a la démonstration desquels je ne puisse faire des objections bien fondées. Fais
cela, et je te répondrai. (Abel 1892: 257)
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most of these formulae only hold under certain conditions and for certain values of the

quantities which appear. *
The «generality of Algebra» is deemed incompatible with mathematical rigor. Cauchy
rejected the (implicit) dialectic between levels A and B: level A has but a heuristic value (at
best: it proves deceiving, more often than not), level B is the only firm ground on which to
base mathematical statements; it has become “reality”.
The discarding of level A created a new generality challenge for Cauchy. The didactic genre
of the traité d’analyse called for a general treatment of all functional situations and for the
laying out of a systematic exposition. Lagrange had met these requirements by resorting to a
universal (enough) form for functions, the power series; obviously, this is not an option for
level-A-skeptic Cauchy. We think that two concepts played, for Cauchy, this central role that
the power-series form had played for Lagrange: the concept of limit and the concept of
continuity. Both strictly operate on the B level, they refer to the numerical behavior of
variable quantities. Limiting processes allowed Cauchy to tackle (and to some extent, invent)
problems of existence for functions: the exponential function, the primitive and the derivative
of a continuous function, the solution of an ordinary differential equation (when regular initial
conditions are given) are functions whose existence is proved by a limiting process. A short
comparison with Lacroix will help illustrate this point, in the case of primitives. After
presenting the (formal) rules for differentiating functions, Lacroix wrote that finding the

primitive (or indefinite integraI)J' f (x)dx of a function f(x) is the reverse problem to that of
finding the derivative; he then presented various methods to (formally) solve this problem; the
definite integral Lb f(x)dx was then introduced, and various numerical methods were

presented to help find an approximate value for this definite integral, in case no primitive
could be formally obtained. Cauchy proceeded exactly the other way round: he used the

approximation methods to prove that the symbol Lb f (x)dx stood for a well-defined number

(provided f is continuous between a and b), then allowed quantity b to vary, thus defining a
new numerical function which was proved to have f(x) as its derivative.

Cauchy also had to distinguish between regular values and singular values. Lagrange had
done it by analyzing the form of a function; this, again, is not an option for Cauchy. This is
where, in our view, the concept of continuity comes into play. To the (cautious) modern
reader, Cauchy’s continuity concept is a cause for puzzlement. One the one hand, his
definition looks like our numerical, point-set theoretic definition. On the other hand, Cauchy
used this definition in ways which the modern reader finds either inconclusive (for lack of
distinction between continuity and uniform continuity, for instance) or altogether misleading;
for instance, Cauchy “established” that the limit of a sequence of continuous functions is a
continuous function ... a fact to which counter-examples were known by the time of Cauchy !
Another puzzling feature is that for Cauchy, continuity was always assumed to hold in an

* Quant aux méthodes, j’ai cherché & leur donner toute la rigueur qu’on exige en géométrie,
de maniére a ne jamais recourir aux raisons tirées de la généralité de I’algebre. Les raisons de
cette espéce, quoique assez communément admises, surtout dans le passage des series
convergentes aux séries divergentes, et des quantités réelles aux expressions imaginaires, ne
peuvent étre considérées, ce me semble, que comme des inductions propres a faire pressentir
quelquefois la Vvérité, mais qui s’accorde peu avec I’exactitude tant vantée des sciences
mathématiques. On doit méme observer qu’elles tendent a faire attribuer aux formules
algébriques une étendue indéfinie, tandis que, dans la réalité, la plupart de ces formules
subsistent uniquement sous certaines conditions, et pour certaines valeurs des quantités
qu’elles renferment. (Cauchy 1989: ij)
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interval (of non-null length) and discontinuity assumed to occur at isolated points, in spite of
the fact that the Cauchy definition seemed to allow for functions with dense discontinuity loci
(as in Dirichlet) and functions which were continuous at isolated points only (though those
didn’t come up until much later).

| think questions of generality help understand this baffling “continuity” concept, in a twofold
way. First, Cauchy’s use of his continuity concept is understandable when one refers to its
epistemic role instead of focusing on the numerical definition. Cauchy’s continuity
hypotheses serve him right as hypotheses of general/regular behavior: to some extent, what
matters is not what Cauchy means when he writes *“continuous”, but what he means to do.
The second element is not specific to Cauchy but plays a part in Cauchy’s choice of the
continuity concept as generality-bearing concept. It can also be found, for instance, in
Ampeére’s famous proof of the “fact” that continuous functions admit a derivative. A close
look at the proof shows that what Ampére meant is that continuous functions have a
derivative, save for isolated points. In every step of the proof, Ampére acknowledged the fact
that for specific values of the variable, the general behavior that is aimed for may not hold ...
yet he didn’t mention it when stating the final theorem. | believe this unwritten rule that
“when dealing with functions, all that is stated and proved is so, save for, maybe, isolated
values of the variable” is an implicit but essential part of a mathematical configuration which
is common to Lagrange, Ampére and Cauchy. Singular (that is, for Cauchy, “discontinuity”)
points may drop out of sight, and are (implicitly) assumed to appear only as isolated points.
Formally universal statements are to be read modulo this proviso, this is the price to pay for a
general statement, that is, one that deals with all functions, whatever they may be *°.

To sum up, in spite of radically opposing views as to the legitimacy of the A-level, it seems to
us that Lagrange and Cauchy had at least this in common: they studied the general behavior
(that is, except for isolated values of the variable) of what would later be termed “usual
functions”. The numerical setting chosen by Cauchy paved the way for the monster-making
business, but it is not a business in which Cauchy engaged, or even a business which he
considered; the functions which Cauchy studied were the same analytic function which
Lagrange studied and the very same properties were to be attained, though in a completely
different way. A systematic comparison between Lagrange and Cauchy helps identify similar
generality demands, and stresses the functional equivalence between the form of the power
series (in Lagrange) and the general property of continuity (in Cauchy). Both mathematicians
faced two generality demands: one that pertained to the genre “general treatise” and called for
the identification of a unifying element (be it form or property); one that was more content-
specific and derives from the fact that functions operate (partially or exclusively) on the B-
level, which called for a distinction between intervals of regular behavior (where general
proven statements hold) and isolated irregular points.

3. Logical generality vs embedded generality: Cauchy vindicated.

We would eventually like to point to a third interaction between questions of generality and
the development of function theory in the nineteenth century. On this occasion, we shall
introduce the concept of embedded generality, in order to document both the reflexive
character of mathematics and a specific form of general statement. As for the term “logical
generality” against which | shall contrast “embedded generality”, it is taken from Poincaré
(see below): it simply denotes the standard idea that a case is more general than another one if
the first one extensionally encompasses the second one.

“® See chapter 4 in (Chorlay 2007)
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3.1 A “small corner” for “good” functions ?

In a 1904 paper on definitions in mathematics, Poincaré took a backward look at the
development of rigor in mathematical Analysis over the nineteenth century; the mood was
significantly different from that of the quotation which we gave in the introduction to this
paper:
Logic sometimes begets monsters. In the last half-century, we saw the emergence of a
bunch of bizarre functions, the purpose of which seems to be to differ as much as
possible from these straightforward functions [honnétes fonctions] that prove useful.
No more continuity, or continuity without derivability etc. What’s more, from the
logical point of view, these weird functions [fonctions étranges] are the most general,
those that we came across without looking for them now appear to be but a particular
case. They are left with but a small corner. In the old days, when a new function was
invented, it was for a practical purpose; nowadays, they are invented for the very
puzg)ose of finding fault in our fathers’ reasoning, and nothing more will come out of
it.
Rigor developed, Poincare lamented, at the cost of fruitfulness; in his view, the
“straightforward functions” should have remained the main topic of study, and younger
mathematicians spent too much time reveling in the minutiae of the general theory of
functions. Yet he could but acknowledge the fact that general functions are more general from
a logical viewpoint: they form the all-encompassing class and many subclasses, sub-
subclasses, sub-sub-subclasses ... can be made out before that of analytic functions, a
situation for which Poincaré used the metaphor of the “small corner” (petit coin) of the
function world.

3.2 The return of Cauchy.

At the very same time however, some mathematicians started using the sophisticated tools of
general function theory (and the point-set theory it gave rise to) in order to vindicate the
classical (say, Cauchy) point of view. They would use generality arguments to show that the
“small corner” is actually large enough. Emile Borel’s work is a good example and 1 will
focus on this case. His overall view is put in the clearest of ways in his 1912 analysis of his
mathematical work; the following quotation is pretty lengthy, but we feel its skilful weaving
of the various threads that we have been following makes it well worth reading:
There were, there still are, mathematicians who choose to ignore what they deem to
be refined subtleties with no practical use; this attitude is indeed legitimate since it
leads to results but it seemed to me that | could not stick with it, for several reasons:
one the one hand, until now, no one could draw a clear line between straightforward
and bizarre functions; when studying the first, you can never be certain you will not
come across the others; thus they need to be known, if only to be able to rule them out.

*" La logique parfois engendre des monstres. Depuis un demi-siécle on a vu surgir une foule
de fonctions bizarres qui semblent s’efforcer de ressembler aussi peu que possible aux
honnétes fonctions qui servent a quelque chose. Plus de continuité, ou bien de la continuité,
mais pas de dérivées, etc. Bien plus, au point de vue logique, ce sont ces fonctions étranges
qui sont les plus générales, celles qu’on rencontre sans les avoir cherchées n’apparaissent plus
que comme un cas particulier. 1l ne leur reste qu’un tout petit coin. Autrefois, quand on
inventait une fonction nouvelle, c’était en vue de quelque but pratique ; aujourd’hui, on les
invente tout expres pour mettre en défaut les raisonnements de nos péres, et on n’en tirera que
cela. (Poincaré 1904: 263)
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On the other hand, one cannot decide, from the outset, to ignore the wealth of works
by outstanding geometers; these works have to be studied before they can be
criticized. ... To my knowledge, Cauchy never explicitly explained what he meant by
“function”; a reading of his work seems to me to reveal evidence that, for him, the
question didn’t arise; “function” was but the general term used to denote any of the
particular functions which the analysts study, each of these particular functions had its
own definition based on elementary functions (by means of series, integrals,
differential equations etc.); it was assumed that any argument pertaining to the general
“function” would apply to all particular functions which would later be discovered,
provided they meet the conditions appearing in the propositions (most of the time,
these conditions are continuity for the function and its derivative).

In the very same way, a biologist would refer to “living beings” or a chemist to
“simple elements” without having had to delineate an a priori concept of the living
being per se, or the simple element per se; they simply have in mind the living beings
that they know or could know of.

This Cauchy viewpoint was contrasted with the seemingly more general method in
which one starts with a function given a priori as a correspondence which can be
devised regardless of explicit formulation; ... here is no place to discuss whether what
can not be formulated can or cannot be an object for science; two remarks will suffice;
on the one hand, this more general conception of functions led to the devising and
studying of new functions, which would otherwise not have been thought of; thus it
proved useful; but, on the other hand, the actual display of analytical expressions
representing the newly devised functions made the a priori conception useless; after a
detour, one comes in fact back to Cauchy’s viewpoint.

... My work on divergent series as well as those on monogenous functions can be
traced directly to Cauchy’s ideas; in these works just as well, | used the improvements
to the rigor of analysis worked out by Cauchy’s successors, while breaking free from
the too narrow conceptions which they introduced along with that very rigor. 42

® 11y aeu, il y aencore des mathématiciens qui ont pris le parti d’ignorer ce qu’ils
considerent comme des raffinements de subtilité sans portée pratique ; cette attitude est
assuréement légitime, dans la mesure ou elle conduit & des résultats, mais il ne m’a pas semblé
possible de m’y tenir, pour plusieurs raisons: d’une part, jusqu’ici, nul n’a indiqué une
démarcation nette entre les fonctions honnétes et les fonctions bizarres ; lorsqu’on étudie les
premiéres, on n’est jamais sir de ne pas voir apparaitre les secondes ; il faut donc les
connaitre, ne flt-ce que pour savoir les exclure. D’autre part, on ne peut pas ignorer, de parti
pris, un ensemble considérable de travaux dus a des géometres éminents ; on doit les étudier
avant de les critiquer.

... Cauchy n’a jamais, & ma connaissance, exposée explicitement ce qu’il entendait par une
fonction ; la lecture de son ceuvre me parait montrer avec évidence que, pour lui, cette
question ne se posait pas ; « fonction » était simplement le terme général qu’il employait pour
désigner I’'une quelconque des fonctions particuliéres considérées par les analystes, chacune
de ces fonctions particuliére ayant sa définition propre, a partir des fonctions élémentaires (au
moyen de séries, d’intégrales, d’équations différentielles, etc.) ; il est sous-entendu que les
raisonnements faits sur la « fonction » en général s’appliqueront, en outre, aux fonctions
particulieres qui pourront étre découvertes ultérieurement et qui posséderont les propriétés
spécifiées dans les énoncés (propriétés qui consistent, le plus souvent chez Cauchy, en la
continuité de la fonction et de sa derivée).

C’est ainsi qu’un biologiste peut parler d’« étre vivant », ou un chimiste d’un « corps simple »
sans avoir été obligé de créer une conception a priori de I’étre vivant en soi ou du corps
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Two significant examples will help understand Borel’s subtle stand. To understand the first
example, one must recall that in Lagrange, Lacroix or Cauchy, singular points were always
assumed to be isolated (on the straight line); in higher dimensions, the locus of singular points
was always assumed to be of non-null codimension in the parameter space, which is why
statements such as “a real-valued square matrix is, generally speaking, invertible” or “three
points in a plane aren’t usually aligned” could be given precise mathematical meaning (which
made them not only meaningful but also true !). In the next phase, the displaying of functions
whose locus of singular points was not made of isolated points was one of the most active
industry in the monster-making business, and Weierstrass’ everywhere singular continuous
function was the monster par excellence. Borel went one step further, so as to ascertain the
generality of the most straightforward of all functions, namely polynomial functions: y being
a bounded function, defined over the 0-1 interval,
Given two positive and arbitrarily small numbers € and ¢’, one can determine a
polynomial P(x) such that the points at which y-P(x) is, in absolute value, greater than
€ make up a set of measure less than ¢’. ... One can also say that, by letting € and &’
tend to zero, there is a sequence of polynomials that tend towards y, except at the point
of a set of null measure.
This result is essential for the theory of functions of one real variable, since it shows
that the singularities of such a function fill very little room; it is thus possible, in many
circumstances, to proceed as if they didn’t exist. The in depth study of the notion of a
set of null measure thereby leads to an middle stand between these geometers who are
inclined to consider only “good” functions and those who could be led to think that
“good” functions are but an extremely particular case. We know, in a precise way, that
neither party have it completely wrong. +°

simple en soi ; ils pensent simplement aux étre vivants qu’ils connaissent ou qu’ils pourraient
connaitre.

On a opposé a cette maniére de voir de Cauchy la méthode, en apparence plus générale, qui
consiste a se donner la fonction a priori, comme une correspondance qui n’a pas besoin d’étre
formulée explicitement pour étre congue ; ... ce n’est pas ici le lieu de discuter si ce qui ne
peut pas étre formulé peut étre réellement objet de science ; deux remarques nous suffiront ;
d’une part, cette conception plus géneérale de la fonction a conduit a construire et a étudier de
nouvelles fonctions auxquelles on n’edt, sans doute, pas songé sans elle ; elle a donc été utile ;
mais, d’autre part, cette construction effective d’expression analytique représentant les
fonctions congues a eu pour résultat de rendre désormais inutile la conception a priori de la
fonction ; aprés un détour, on revient, en fait, au point de vue de Cauchy.

... Mes travaux sur les séries divergentes, comme ceux sur les fonctions monogenes, se
rattachent directement aux idées de Cauchy ; la aussi, j’ai utilisé les perfectionnement
apportés a la rigueur de I’analyse par les successeurs de Cauchy, mais j’ai su me dégager des
conceptions trop étroites introduites en méme temps que cette rigueur. (Borel 1972: 120)

* Etant donnés deux nombres positifs arbitrairement petits ¢ et &’, on peut déterminer un
polynéme P(x) tel que les points ou la différence y-P(x) est plus grande en valeur absolue que
¢ forment un ensemble de mesure inférieure & ¢’. ... On peut aussi dire, en faisant tendre ¢ et
g’ vers zéro, qu’il y a une suite de polyndbmes qui tend vers y, sauf pour les points d’un
ensemble de mesure nulle.

Ce résultat est essentiel pour la théorie des fonctions d’une variable réelle, car il montre que
les singularités de ces fonctions occupent trés peu de place ; il est par suite possible, dans
bien des circonstances, de procéder comme si elles n’existaient pas. On est ainsi conduit, par
I’étude approfondie de la notion d’ensemble de mesure nulle, & prendre une position en
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From a logical point of view, the concept of continuous function is much more general than
that of a polynomial function; but the refined tools of point-set theory help us go beyond this
simple fact, they help us asses just how much more general they are. And it turns out that, in
some way, polynomial functions are general enough. This kind of generality is context-
dependent, in two ways. It depends on the mathematical tool with which one assesses
generality (here, the measure of a set of points on the straight line); in this case the
polynomial case proves general enough to found the integration theory of continuous
functions (goal-dependence):
The integral of y may be defined as the limit of the integrals of polynomials P(x). ...
This example shows how the notion of measure allows us to rid the theory of real
functions of much of the complication which had emerged in the logical development
of analysis. *°
The other example comes from Borel’s work on power series in one complex variable. In a
1896 note to the Comptes Rendus de I’Académie des Sciences de Paris, Borel had given a
mere heuristic argument to support the claim that a function defined by a power series whose
radius of convergence equals one cannot generally be analytically extended beyond this
convergence disc. By 1912, he had devised a more rigorous and much more sophisticated
argument, by applying the notion of set of zero-measure in a function set. Rephrasing in terms
of probability (zero-measure sets are those of zero probability), he summarized:
I proved that for such a series, picked at random (words whose meaning | made precise),
its convergence circle is generally a cut, which means that the cases in which analytic
continuation is possible are to be deemed exceptional. >
In this example, the logical viewpoint says nothing more than: not all power series (whose
radius of convergence equals one) can be analytically extended; the class of analytic functions
whose maximal domain of analyticity is the unit disc is strictly included in the class of
analytic functions whose maximal domain of analyticity contains the unit disc ... Borel goes
beyond this rather trivial statement (which could easily be proved by displaying just one
“bizarre” power-series) and endeavors to assess how much more general the second class is. It
turns out that, if the mathematical tool used to compare degrees of generality is a measure-
theoretic tool of a function-space, the smaller of the two class is so bulky that its complement
has probability (or area, to state it more geometrically) zero: in this case, monsters (non-
continuable function elements) are the rule and “good” power series are the exception. This
statement may sound rather anti-Cauchy, but Borel quite dramatically turns it into a pro-
Cauchy argument:
It is thus illusory to consider Taylor series a priori, regardless of its origin, this abstract
study can only lead to negative answers. >

quelque sorte intermédiaire entre les geometres disposés a ne considérer que les « bonnes »
fonctions et ceux qui auraient pu étre tentés de croire que ces « bonnes » fonctions ne sont
gu’un cas extrémement particulier. Nous savons d’une maniere précise que ni les uns ni les
autres n’ont tout a fait tort. (Borel 1972: 122)

%0 |_"intégrale de y peut étre définie comme la limite des intégrales des polyndmes P(x). ... Cet
exemple montre comment la notion de mesure permet de débarrasser la théorie des fonctions
de variable réelle de la plupart des complications qui y avaient été introduites par le
développement logique de I’analyse. (Borel 1972: 123)

> J°ai démontré qu’une telle série choisie au hasard (mots dont j’ai précisé le sens) admet en
général son cercle de convergence comme coupure, c’est-a-dire que les cas ou le
prolongement analytique est possible doivent étre regardés comme exceptionnels. (Borel
1972: 123)
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Thus, not only the abstract, a priori, all-encompassing definition of a function as a
correspondence is of little worth, but even in the realm of analytic functions, Weierstrass’
abstract, a priori definition based on the notions of power series and analytic continuation
fails to delineate the class of “good” functions, preposterously so.

3.3.1 Embedded generality.

In the first part of this chapter, we showed how the search for a more rigorous and systematic
function theory — one that could encompassing the difficult case of functions studied with
Fourier series — resulted in significant changes in the function concept and in the adoption of
new systematic ways of charting the function world. Essential features of this new
configuration are those which Poincaré or Borel call “logical”: the use of an abstract
definition of a function, the delineation of function classes (or function sets) by abstract
characteristic properties and milestone standard examples. In this viewpoint, if a function
class C; is strictly included in function class C, (extensional side of the logical viewpoint),
then C, is more general than C; ... and that’s about it.

Yet, as we saw with Borel’s example, this extensional viewpoint can serve as stepping stone
for a new kind of investigation: C, may be logically more general than Cy, but how much so ?
Can’t C; be general enough for some purpose ? Is C; so special that it can, in some
circumstances, be neglected altogether ? Those questions are by no means specific to function
sets or function theory; any set of objects, any parameter space for some mathematical
situation can be investigated in this way. The tools with which the degree (or relative degree)
of generality is assessed is a mathematical tool, though, in most cases, not a number (as the
word “degree” might suggest). To compare in terms of “size” two sets, one being part of the
other, a wealth of methods is available to the twentieth-century mathematician. Dimensional
arguments had been in use since classical mathematics: a doubly-infinite set is significantly
larger than a simply-infinite one, though the fact that the smaller one may disconnect the
larger one may give it a global topological importance that its “size”, alone, doesn’t account
for; in this respect, it is safer to neglect a subset of singular cases whose dimension is at least
two degrees lower than that of the space of all cases. With the advent of point-set theory in the
last years of the nineteenth century, a great variety of new tools were made available. Let us
give but a few simple and context-free examples. Consider the set C; of positive rational
numbers less than 1 and the set C, of positive real numbers less than one. One of the
mathematical tools that can be used is that of density: C; is dense in C,, which (loosely
speaking) means that there are elements of C; “everywhere” in C,. In some cases, it makes C;
general enough; for instance, to check that two real-valued continuous functions f and g are
equal on C,, it suffices to check that they are equal on C;. Another mathematical tool is
measure theory. Let’s say that the probability (or measure) of an interval (which is a part of
C,) is its length, and that the probability of a (denumerable) infinity of pairwise disjoint
intervals is the sum of their probabilities/lengths, then C; has probability (or measure) 0; C;
seems to be completely negligible compared to C, (which has probability 1): if a number is
chosen at random in C,, the probability that a C; number be chosen is 0. As Borel remarked,
this is relevant for integration theory. We wish to coin the term “embedded generality” for this
kind of generality assessment which relies of the description of a mathematical structure
(whether of set, ordered set, measured space, topological space, manifold etc.) on a set of
objects or parameter space for mathematical situations. For instance, the search for the right
structure in the case of the qualitative theory of dynamical systems is beautifully illustrated in

5211 est donc illusoire de considérer la série de Taylor a priori, indépendamment de son
origine, cette étude abstraite ne peut conduire qu’a des résultats négatifs. (Borel 1972: 124)
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Tatiana Roque’s chapter in this volume. One of the striking features of embedded generality is
its twofold context-dependence: dependence on the purpose and on the measuring-tool. In our
simple example, C; can turn out to be either general enough or completely negligible. This
concept testifies to the reflexive nature of mathematics, its ability to turn apparently (and
formerly) meta-level questions about mathematics (such as: the comparison between two
theories, the degree of generality of a class of objects/statements, the choice of the class of
objects which are really worth investigating) into mathematical questions, by designing the
proper mathematical tools (e.g. group relations to study the relationships between various
geometrical theories, assessment of embedded generality).

We came across this concept of embedded generality in our discussion of the interactions
between questions of generality and the development of function theory in the nineteenth
century, but we do not mean to say it emerged in this context. For instance, Anne Robadey’s
chapter documents Poincaré’s devising of measure-theoretic arguments in celestial
mechanics; her historically detailed and epistemologically informed narrative shows how
Poincaré managed to turn a loosely-formulated corollary to a (false) theorem into a full-
fledged rigorous theorem about the general behavior of orbits, by describing the parameter
space of orbits with tools he imported from the theory of continuous probability. He thus
kicked off the theory of dynamical systems, a theory in which several types of embedded
generality arguments are of the essence: Tatiana Roque’s chapter on genericity documents at
least two generation of such arguments since World War 1l. Other examples could be found in
Poincaré’s work, for instance in his work on the so-called “Fuchsian” functions (1881-1885).
Presenting the mathematical details would take us far beyond the scope of this chapter, it
suffices to know that this example documents the passage from dimensional arguments to
topological arguments: to show that two parameter spaces could be identified, Poincaré had to
show that they not only were of the same dimension, but also topologically equivalent
(homeomorphic). The proof-method he devised on this occasion, the “method of continuity”
(méthode de continuité in French, Kontinuitatsbeweis in German), would stir admiration (and
disbelief) until the 1920s *.

Conclusion.

The content of this chapter emerged from an exploration of the use of the word “general” in a
well-known corpus, that on the foundation of function theory in the nineteenth century. In
keeping with the spirit of this handbook, we endeavored to make sense of the wealth and
diversity of occurrences by focusing on topics such as the use of examples, exceptions and
singular cases; by focusing, also, on ways of expressing and assessing generality. These
guiding threads led us to identify three distinct configurations which we strove to
characterize. As descriptive terms, we used both epistemic configuration and mathematical
practice: the first referred to closed (at least coherent) epistemic structures (with their own
rules for action), the second referred to the way in which epistemic configurations were dealt
with by mathematicians (in accordance to or, at times, in spite of the rules).

These three configurations are by no means independent, quite the contrary; we clearly opted
for a kind of dialectical narrative, in which the third phase was explicitly described -
sometimes by mathematicians themselves, such as Borel — as a synthesis of the former two. In
a sense, this dialectic movement relies not so much on three concepts of generality but more
on a feature that is specific to the objects under study: mathematical functions. Indeed, a
function is a two-faced entity: it can either be considered as an individuum — when a formula
is written down, or when the function is proved to be an element of a given class of functions

>3 See, for instance, chapter 5 in (Chorlay 2007).
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— or as a dynamic plurality — as a correspondence between numerical values; in the latter
viewpoint, the behavior of a given function can, in turn, be considered general for some
numerical values of the variable and singular for some other values. This Russian doll
structure accounts for much of the complexity of the story we tried to tell. On the basis of our
analysis of the third phase — in which tools from point-set theory first designed to describe the
singular sets of values of an arbitrary function started to be used to distinguish among
functions in function sets — we eventually endeavored to define the concept of embedded
generality, which we think is specific to the mathematical (or mathematicised) sciences but
not to mathematical Analysis.
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