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Abstract. Historical work on the emergence of sheaf theory has mainly concentrated on the

topological origins of sheaf cohomology in the period from 1945 to 1950, and on subsequent

developments. However, a shift of emphasis both in time-scale and disciplinary context can

help gain new insight into the emergence of the sheaf concept. This paper concentrates on

Henri Cartan’s work in the theory of analytic functions of several complex variables and the

strikingly different roles it played at two stages of the emergence of sheaf theory: the

definition of a new structure and formulation of a new research programme in1940-1944; the

unexpected integration into sheaf cohomology in 1951-1952. In order to bring this two-stage

structural transition into perspective, we will concentrate more specifically on a family of

problems, the so-called Cousin problems, from Poincaré (1883) to Cartan. This medium-term

narrative provides insight into two more general issues in the history of contemporary

mathematics. First, we will focus on the use of problems in theory-making. Second, the

history ofthe design of structures in geometrically flavoured contexts – such as for the sheaf

and fibre-bundle structures – which will help provide a more comprehensive view of the

structuralist moment, a moment whose algebraic component has so far been the main focus

for historical work.
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Introduction

Sheaf theory has already been investigated from a historical viewpoint, by John Gray (Gray

1979), Florence Fasanelli (Fasanelli 1981) and Christian Houzel ((Houzel 1990), (Houzel

1998)), for instance. These narratives document the first stages of sheaf cohomology and

usually start with Leray’s introduction of both the word “faisceau” and a first form of sheaf

cohomology, in his 1946 lessons on algebraic topology (Leray 1946). They document the

refinement of cohomology techniques – as with Weil’s introduction of what would soon

become the spectral sequence (Weil 1947) – and the central part played by Henri Cartan’s

algebraic topology seminar, from 1948 onwards. When moving on into the 1950-1957 period,

they have investigated several topics: the first significant achievements in algebraic topology

and in the theory of functions of several complex variables, the dissemination of sheaf

cohomology techniques beyond the Parisian circles where they originated, the introduction of

sheaves and cohomology in algebraic geometry, or the interaction with emerging category

theory.

Although the long-term roots of sheaf cohomology do not go unacknowledged, we would

like to show that their study can provide new insight into more general questions about the

historical development of contemporary mathematics.

We will thus change focus, time-scale and theoretical context. We will focus on the

emergence of the sheaf concept or structure (rather than sheaf cohomology) in Henri Cartan’s

work on the theory of functions of several complex variables (and not in topology). More

specifically, we will focus on Cartan’s 1940-44 papers in which he defined a new abstract

structure, and spelled out a new research programme. So as to better characterise this pivotal

moment, we shall locate it at the intersection of two time-lines. The first time-line covers the

period from 1883 to 1940 and is devoted to the history of what Cartan called the “Cousin

problems”, from Poincaré’s 1883 paper on the representation of meromorphic functions of

two complex variables to Cartan’s 1940-44 structural articulation of a research programme for

the handling of all Cousin-like problems. Roughly put, the two main problems (Cousin I and

Cousin II) are: to find a meromorphic function with given poles and principal parts (Cousin I

problem), which is the analogue for several complex variables of what Mittag-Leffler’s

classic theorem states for the one complex variable case; to find a holomorphic function with

given zeroes or zero-locus (Cousin II problem), which is the analogue for several complex

variables of a classical Weierstrass theorem in one complex variable. Cartan christened them



“Cousin problems” because they were both tackled in a uniform way in Pierre Cousin’s 1895

dissertation (Cousin 1895).

Our second time-line will cover the period from 1945 to 1953.  The background of Cartan’s

1940 paper leads to a historical narrative which differs significantly from those that centre on

the topological background and cohomological techniques. Among other things, interpreting

the 1945-1952 definitions of the sheaf concept as a second generation of definitions will help

us highlight the fact that, in addition to great technical efficiency, sheaf cohomology also

brought conceptual clarification. We will also stress the fact that, in spite of Cartan’s

involvement, the sheaf cohomology theory of 1945-1950 was developed independently of

Cartan’s 1940-44 structural approach to global problems in several complex variables; it can

be argued that the unexpected merger of the two research lines, in the work of Cartan and

Serre  in the early 1950s, would be the real take-off point for sheaf theory as we know it.

This historical narrative should enable us to touch on two more general issues in the history

of mathematics: the various uses of problems in the contemporary period, on the one hand;

the nature and time-sequence of the structuralist movement, on the other hand.

The Cousin problems are a rather unusual instance since, to a large extent, their formulation

and even the technical tools used to tackle them were reasonably stable over a rather long

time span (1883-1940). The stability of core elements allows for long-term comparisons and a

close chartering of the more variable elements, such as, for instance, their insertion in various

research programmes. Beyond the issue of research programmes, we will endeavour to

characterise the various uses of problems (Chemla (forthcoming)); along the way, we will see

the Cousin problems used as mere tools to tackle a more general problem (as in the 1930s); as

paradigmatic problems from which to carve out a general problem form and a general

structure (as in Cartan’s 1940 paper); eventually, as an unexpected field of application for

new technical tools (in the 1951−1953 period). Among the variable elements, we will also pay

close heed to problem labels, so as to provide empirical elements for the reflection on general

issues such as: how do mathematicians assess and express the similarity or dissimilarity of

problems ? How and for what purpose do they constitute problem families ?

Henri Cartan’s 1940 pivotal paper is also an example of structural transition, or transition to

structuralism; as such, it can be used to investigate several aspects of structuralism which, we

feel, have not received the attention they deserved. There are of course many ways to look at

the “structuralist moment”, say, from Emmy Noether’s Idealtheorie in Ringbereiche (Noether

1921) to Bourbaki’s 1942 L’architecture des mathématiques (Bourbaki 1950) and Eilenberg

and MacLane’s 1945 General Theory of Natural Equivalences (Eilenberg and MacLane



1945)1. To name a few, one can strive to document the long-terms origins of structuralism

(Corry 1996); one can study the 1930−1945 phase on the background of the first, turn of the

twentieth-century, structuralist phase, with its theories of abstract spaces (Fréchet), its abstract

theories of fields (Steinitz) or of topological spaces and Riemann surfaces (Hausdorff, Weyl);

the more philosophically oriented will investigate the links (if any) with foundational issues,

axiomatic style, and logicist or formalist views of mathematics; the various attempts at

formalising the very notion of structure can be analysed2. None of these important issues are

directly touched upon in this paper. Rather than the conceptual roots of structuralism or the

mathematical formalisation of the structure concept, we propose to investigate it as a specific

mathematical practice, and focus on two less well-known aspects on which the emergence of

the sheaf concept bears directly.

Hermann Weyl’s sceptical view of the structural, axiomatic approach in algebra and

topology is well-known. In 1931, he concluded his address to the Swiss association

Gymnasium teachers with a rather grim forecast:

But I do not want to conceal from you the growing feeling among mathematicians

that the fruitfulness of the abstracting method is close to exhaustion. It is a fact that

beautiful general concepts do not drop out of the sky. The truth is that, to begin with,

there are definite concrete problems, with all their undivided complexity, and these

must be conquered by individuals relying on brute force. Only then comes the

axiomatizers and conclude that instead of straining to break in the door and bloodying

one’s hand one should have first constructed a magic key of such and such shape and

then the door would have opened quietly, as if by itself. But they can construct the key

only because the successful breakthrough enables them to study the lock front and

back, from the outside and from the inside. Before we can generalize, formalize and

axiomatize there must be mathematical substance. I think that the mathematical

substance on which we have practiced formalization in the last few decades is near

exhaustion and I predict that the next generation will face a tough time. (Weyl 1995b:

650-651)

The fact that major landmarks of the structural moment, such as van der Waerden’s

Moderne Algebra (Waerden 1930, 1931) or Bourbaki’s Eléments de mathématiques, are

                                                          
1 The choice of these landmarks as significant (both for their contents and as dates) for the delineation of
something I call the “structuralist moment” calls for justification – this is an understatement. However, the
content of this paper does not depend on general assumptions on this structuralist moment, and this introduction
is no place to go into that.
2 As in (Corry 1996) and (Krömer 2007).



textbooks or encyclopaedias, written in an occasionally dogmatic style, comes as a support to

Weyl’s unforgiving appraisal: the structural approach is merely a textbook style, a way of

tidying-up and streamlining a wealth of mathematical knowledge previously gathered by

completely different means; clean but not fruitful, and, to some extent, deluded as to its own

epistemic power. However, Cartan’s 1940/44 papers give an example of the exact opposite:

he introduced a structural approach to find the proper tools to deal with a family of problems

that had not been solved by other means. It is indeed true that in the 1952−1953 talks by

Cartan and Serre on sheaf cohomology and global problems in several complex variables, the

“door” seems to open “quietly, as if all by itself”;  but the history of sheaf theory on the

1940−1953 period sheds light on the making of this “magic key”.

Structuralism as an ars inveniendi and not as a mere streamlining practice; Bourbaki as

group of researchers – Ehresmann, Weil, Dieudonné and Schwartz will play a part in our

narrative – and not only as a group of self-proclaimed legislators in mathematics. We will

eventually shift emphasis as to the part of mathematics concerned, turning away from

algebraic structures and their importation into combinatorial topology (resulting in algebraic

topology). We will study the emergence of the sheaf concept in a context of the design of

structures in geometry and, in particular, contrast it with the emergence of the fibre-bundle

structure. Both the sheaf and fibre-bundle structures are examples of mixed−structures, the

design of which require the skilful weaving together of several threads: vector spaces and

groups on manifolds for fibre-bundles, rings and modules on topological spaces for sheaves. It

takes some time to perfect these delicate structures, and know-how in structure design is

accumulated in the process. We shall see that the progressive design of these two highly

sophisticated structures entailed trading of concepts (e.g. “sections”), models of formulation

(e.g. gluing together), general ideas (e.g. going global) and technical tools (e.g. partitions of

unity, cohomology with local coefficients). In this final part of our narrative, technical

streamlining will go hand in hand with conceptual bricolage.

Poincaré’s generalisation of a Weierstrass theorem

This first part on Poincaré could have been very short. Indeed, we could have just

mentioned the theorem that would later be referred to as the starting point of a specific

research line, thus ignoring 19th century issues to a large extent. We felt, however, that

presenting subsequent developments on the background of a rather detailed description of

Poincaré’s 1883 theorem was necessary to dispel the illusion that “it was there all along”. To



reach this goal, we distinguished among various elements – the laying-out of the problem,

proof techniques, research programmes (if any) etc. – in order to show that some played no

part in later developments, while others played significant but evolving parts. We shall also

place emphasis on two elements which would later become parts of general mathematical

knowledge, but were not in 1883: first, the use of open coverings and patching-up site

techniques (a notion we shall define); second, the “passing from local to global” problem

label.

“Same” problem, new ekthesis

The starting point of Poincaré’s 1883 paper Sur les fonctions de deux variables (Poincaré

1883b) lies in a theorem of Weierstrass that can be found, for instance, in the 1876 paper Zur

Theorie der eindeutigen analytischen Functionen (Weierstrass 1876). In his paper,

Weierstrass aimed at classifying single-valued functions of one complex variable according to

the localisation and type (polar / essential) of their singular points. One of the major building

blocks for this classification is the following:

Let f(x) be a one-valued function of x with ∞  as its only essential singular point; in

that case, it is possible to form a function G2(x) whose sequence of zeroes is identical

to that of function 1/f(x) (it may have an arbitrary, even an infinite, number of

inessential singular points). Then G2(x).f(x) is also an entire function of x, and,

denoting it by G1(x), we get f(x) = G1(x)/G2(x). 
3

If we focus on the case of an infinite family of poles, it is stated explicitly in other parts of

the paper that the “sequence of zeroes” (Reihe der Nullstellen) is made up of a pair of

sequences, one of complex numbers (a1, a2,….) and one of non-null integers (m1, m2,…)

indicating the multiplicity of the poles. It is of course standard knowledge at the time that

poles are isolated in the domain of meromorphy (which, in this particular case, is assumed to

be C), so the (ai) sequences converges towards the point at infinity ∞ for any such

meromorphic function. Weierstrass’ theorem proves that this necessary condition is also

sufficient; hence, the converse of a simple (topological) fact about the locus of zeroes of a

meromorphic function turns out to be a significant theorem on functional existence (of a

                                                          
3 “Ist f(x) eine eindeutige Function von x mit der einen wesentlichen singularitäten Stelle ∞, so lässt sich in dem
Falle, wo sie ausserdem beliebig viele (auch unendlich viele) ausserwesentliche singuläre Stellen hat, eine
Function G2(x) herstellen, für welche die Reihe der Null-Stellen identisch ist mit der Reihe der Null-Stellen der
Function 1/f(x). Dann ist G2(x).f(x) ebenfalls eine ganze Function von x, und man hat, wenn diese mit G1(x)
bezeichnet wird, f(x) = G1(x)/G2(x)” (Weierstrass 1876: 102). Free translation.



meromorphic function with given zero-locus) and function representation: any function which

is meromorphic over C can be written as the quotient of two power series with infinite

convergence radius4.

The goal of Poincaré’s paper is quite straightforward: to establish the analogous theorem in

two complex variables. However, the very statement of the two-variable problem cannot

proceed along the same lines as its one-variable counterpart and, this very change of

formulation would, by itself, single out Poincaré’s paper as the natural starting point for our

inquiry. Indeed, in the one-variable case, to denote a locus which could be that of an entire

functions, two simple sequences would do (one of complex numbers, one of integers), with a

simple topological proviso: the (ai) sequence has to go to infinity. The locus of zeroes of a

functions in two complex variables, though, is a two-dimension spread in four-dimension

space (in real terms): not only does this fact make the problem significantly more difficult to

solve, but the very ekthesis – the laying out of the problem – is, in itself, thorny: how to refer

to a locus that could be the zero locus of  an entire function (without, of course, assuming it is

the zero-locus for one such function, which would kill the problem before it’s hatched5).

Poincaré resorts to an ekthesis which exhibits a non-standard problem form:

Here is the problem:

I consider a function of two variables, F(X,Y), and assume that, in the

neighbourhood of any point X0, Y0 it can be written in the form 
D

N
, where N and D are

two series (ordered according to the powers of X−X0 and Y−Y0) which converge for

sufficiently small values of the modulus of these quantities. Furthermore, I assume

that, when the moduli of X−X0 and Y−Y0 remain small enough, the series N and D can

vanish simultaneously but at isolated points. I claim this function can be written in the

form 
),(

),(

1 YXG

YXG
, where G and G1 are everywhere converging series ordered according

to the powers of X and Y. 6

                                                                                                                                                                                    

4 Functions of this type (in one or more complex variables), Weierstrass and Poincaré call “entire”. We will stick
to this terminology.
5 The 21st century mathematical reader may find this question to be rather rhetorical, since she can think of
standard “obvious” and “elementary” ways to do that. We claim Poincaré’s work played a significant part in the
emergence of this  “basic know-how”, a point which can only be partly substantiated in this paper (for more, see
(Chorlay 2007)). For now, it is sufficient to acknowledge that the passage from one to two variables significantly
affects the laying out of the problem and not only the tackling of it.
6 “Voici quel est le problème :



So, instead of a pre-functional pair of sequences which served the purpose of setting out the

problem exactly as in the one-variable case, Poincaré’s setting is functional from the outset.

The laying out exhibits the general problem form “passing from local data to global

existence”, though Poincaré neither uses any such meta-level description, nor points to the

generality of this type of problem.

At first sight, this ekthesis may seem to be void though: since the balls (“hypersphères”)

over which the local representatives are given may overlap, it seems all the N functions are

mere analytic continuations one from the other, and form just one big G function (as D

functions do for G1). Poincaré explains that it is not so: in the overlap of two neighbouring

balls N/D = F = N’/D’, which does not imply N = N’ and D = D’; rather, it implies that N =

(D/D’) N’, i.e. N = ϕ N’ where ϕ is a regular function defined in the overlap and which

vanishes nowhere in it (since, by hypothesis, D and D’ have the exact same zero-locus). Thus,

the various Ns (and Ds) that are to be patched up into one G (and one G1) show some kind of

global coherence indeed, but not a straightforward one: in the overlaps, they only coincide up

to multiplication by non-vanishing regular functions (Poincaré 1883b: 147).

Same problem, different tools

The problem is to find an entire function K such that KF is also an entire function.  Poincaré

thoughtfully summed up his proof tactics for us (or rather, for the Paris Academy of Science).

He first switched from a complex to a real setting by writing X = x+iy, Y = z+it (where x,y,z,

and t are real numbers) and calls a real function of four variables (x,y,z,t) a potential

(“fonction potentielle”) if its Laplacian ∆ vanishes identically. A non-singular one-valued

potential function, he calls holomorphic. The first two (out of four) steps of the proof are

those of primary interest to us:

1° This being established, I construct an infinity of hyperspherical regions 0
1R ,

0
2R ,… . I assume that any point (x,y,z,t) belongs to at least one, and at most five of

                                                                                                                                                                                    
Je considère une fonction de deux variables F(X,Y) et je suppose que dans le voisinage d’un point quelconque

X0, Y0 on puisse la mettre sous la forme 
D

N , N et D étant deux séries ordonnées suivant les puissances de X-X0

et Y-Y0 et convergeant lorsque les modules de ces quantités sont suffisamment petits. Je suppose de plus que,
lorsque les modules de X-X0 et Y-Y0 restent assez petits, les deux séries N et D ne peuvent s’annuler à la fois que
pour des points isolés. Je dis que cette fonction peut se mettre sous la forme 

),(

),(

1 YXG

YXG , G et G1 étant des séries

ordonnées suivant les puissances de X et Y et toujours convergentes. ” (Poincaré 1883b: 147) The page number
refers to the Œuvres.



these regions. I assume these regions to be so chosen that inside 0
iR , for instance,

function F can be written in the form 
i

i

D

N
.

I also consider those regions 1
iR  consisting in the part that is common to two of the

0
iR  regions, and regions 2

iR , 3
iR , 4

iR  consisting in the part that is common to three,

four or five of these.

2° I shall construct a potential function p

iJ  with the following properties: it is

holomorphic outside p

iR  and tends to 0 as x2+y2+z2+t2  increases indefinitely. The

difference p

iJ - log mod D is holomorphic inside p

iJ ; eventually, on the border of

region p

iR , p

iJ  is holomorphic where D does not vanish. 7

In order to tackle the problem of building up a potential function whose zero-locus is

exactly the polar-locus of F, Poincaré first split it up in problems over a denumerable set of

balls in four−dimensional space. In these balls, step 2 is tractable with tools from potential

theory: Poincaré relied on explicit integral formulae (though without explicitly referring to

single layer potentials (“potentiels simple couche”)) to solve “le problème de Dirichlet” for

the unit hypersphere (Poincaré 1883b: 150); then he proved a uniqueness theorem (for

bounded, nearly singularity-free, potential functions in R4) (Poincaré 1883b: 154-157). He

also replaced the multiplicative problem: find a potential function that has the right zero-locus

inside the ball and vanishes nowhere outside the ball; with the additive problem: to find a

potential function which is regular outside the ball and has the same singularities as log |D|

inside the ball. This makes the problem tractable, since the potential-theory methods give him

control over singularities but not over zeroes.

                                                          
7 “1° Cela posé, je construis une infinité de régions hypersphériques 0

1R , 0
2R ,… . Je suppose qu’un point

quelconque (x,y,z,t) appartient au moins à une et au plus à cinq de ces régions. Je suppose que ces régions sont

choisies de telles sortes qu’à l’intérieur de 0
iR , par exemple, la fonction F peut se mettre sous la forme 

i

i

D

N .

J’envisage également les régions 
1
iR , formées de la partie commune à deux des régions 

0
iR  et les régions 

2
iR ,

3
iR , 

4
iR formées de la partie commune à trois, à quatre ou à cinq de ces régions.

2° Je construirai une fonction potentielle 
p

iJ jouissant des propriétés suivantes : elle est holomorphe à l’extérieur

de 
p

iR  et tend vers 0 quand x2+y2+z2+t2 croît indéfiniment. La différence 
p

iJ - log mod D est holomorphe à

l’intérieur de 
p

iJ  ; enfin, sur la limite de la région 
p

iR , 
p

iJ est holomorphe quand D ne s’annule pas.”

(Poincaré 1883c: 145)



Now, the exp( 0
iJ ) are singularity-free potential functions, and each of them has the right

zeroes inside the 0
iR  ball and none outside it. It would seem natural to consider

( )∑∏ = 00 exp)exp( ii JJ , deal with the thorny convergence problems, then recover a

complex analytic function from its real part. Both of these play a part in the proof indeed, as

steps 3 and 4, and rely on techniques that we need not go into. But before proceeding to steps

3 and 4, Poincaré had to deal with a multiplicity problem stemming from the fact that the 0
iR

balls overlap: in the overlap of two such balls, ∏ )exp( 0
iJ has the right zero-locus but its

multiplicity is not right. To tackle this problem, Poincaré used a techniques of checks and

balances: in 1
, jiR = 0

iR  ∩ 0
jR , the potential theory techniques enabled him to build up a

function 1
, jiJ , which is singularity-free outside 1

, jiR  and such that 1
, jiJ -log |D| is singularity-

free inside 1
, jiR . To get the right multiplicity in 0

iR  ∪ 0
jR , the sum 0

iJ + 0
jJ  should be replaced

by 0
iJ + 0

jJ − 1
, jiJ ; but this, in turn, might fail to show the right multiplicity when three balls

overlap … . The checks and balances process needs not be pursued to infinity though, since

Poincaré stated (without proof) that he could start from an open covering in which no six balls

overlap. Steps 1 and 2 thus lead to the (partial) conclusion:

(…) if at whatever point inside one of the n 0
iR  regions, function F can be written in

the form 
D

N
, then the function

∑∑∑∑∑ −+−+− DJJJJJ iiiii modlog43210

is holomorphic. 8

This formula might look ambiguous, for lack of multiple indices, but the idea is quite clear.

Same problem, different research programmes

In spite of the fact that the theorem proved in this paper comes directly from Weierstrass’

work on one-valued analytic functions in one complex variable (Weierstrass 1876), Poincaré

did not take on Weierstrass’ research programme. The goal which Weierstrass set for his

                                                          
8 “(…) si en un point quelconque intérieur à l’une des n régions 0

iR , la fonction F se met sous la forme 
D

N , la

fonction ∑∑∑∑∑ −+−+− DJJJJJ iiiii modlog43210 est holomorphe.” (Poincaré 1883b: 158)



investigations on general (as opposed to special, e.g. elliptic, functions) one-valued functions

in one complex variable is to assess the extent to which the “arithmetic nature” of the

dependence between the function (seen as a dependent variable) and the free variable is

determined by a few relevant pieces of information, the most important of which being the

locus and nature of singular points. The paradigm is that of rational function: they, as a class,

are characterised by the fact that they are regular for all values of the variable9, except for a

finite number of poles; the explicit formula (which exhibits the “arithmetic nature” of the

dependence (Weierstrass 1876: 83)) for each function of this class is determined (up to a non-

zero multiplicative constant) by the locus and orders of zeroes and poles. In order to deal with

more general cases, Weierstrass relied on some topological notions which he defined in his

lectures on the foundation of function theory (for instance (Weierstrass 1988: 83 and fol.)):

neighbourhood of a point, domain (i.e. open, strip-connected subsets of numerical spaces),

boundary point and boundary of a domain. For an analytic function, he first defined the

domain of continuity A (“Stetigkeitsbereich”, our domain of holomorphy), whose boundary

points he defined to be the singular points. He then distinguished between essential and

inessential (polar) singular points and labelled A’ the domain made up of A and the poles (our

domain of meromorphy). The general goal is to classify analytic one-valued functions

according to the properties of domain A’ and nature of singular points; the 1876 paper deals

with the cases in which A’ is the domain of the independent variable (point at infinity

included) save for at most a finite number of essential singular points, and promotes the study

of essential singular points with the theorem on the density of the image of any of their

neighbourhoods. The theorem which is Poincaré’s starting point appears half way through

Weierstrass’ paper, when functions with at most one essential singular points are studied10.

This carefully laid out list of questions is not the only aspect that is not reflected in

Poincaré’s paper; Weierstrass’ careful selections of tools is not either. Weierstrass avoided all

“transcendental” methods, and admitted but a small range of expressions: power series as

starting points; rational functions and the exponential function (one essential singular point,

no zeroes) in the final expressions. Needless to say integral formulae (such as Poincaré’s

single layer potentials) and partial differential operators (such as the Laplacian, and other

relevant operators with no counterparts in the one-variable case) are nowhere to be found in

Weierstrass’ paper.

                                                          
9 “all” meaning all “finite” values of variable z, and the infinite value z = ∞.
10 This only essential singular point can be sent at infinity, hence the focus on entire functions.



The fact that Poincaré changed settings altogether by working three of the four steps of his

proof in the setting of real functions with identically vanishing Laplacian (i.e. potential

functions), is not ascribable to a mere matter of taste. As he pointed out in the paper (Poincaré

1883b: 152), and again in 1901 in his general analysis of his mathematical work (Poincaré

1901: 70-73), the chunking of the pole-locus into a denumerable infinity of loci contained in

balls couldn’t possibly have been achieved at the complex analytic level: in order for real

function u of four real variables be the real part of a (possibly multi-valued) analytic function

in two complex variables, u has to satisfy five independent partial differential equations, only

one of which is the vanishing of the Laplacian; this is a striking difference with the one-

variable case, in which the complete overlap of the two classes – potential functions in two

real variables, real parts of (possibly multi-valued) analytic functions in one complex variable

–  was the starting point of Riemann’s theory of functions of one complex variable. In the

two-variable case, the class of potential functions is much larger than that of real parts of

analytic functions, hence much more tractable since it satisfies the Dirichlet principle (at least

for balls). These tactics, of course, call for additional work later on, in order to recover

analytic functions from potential functions (step 4 of Poincaré’s proof).  The way this change

of setting allowed Poincaré to overcome the specific difficulty of the two variable case is what

he emphasised as the great idea and great success of this 1883 paper, when reflecting on it in

his 1901 overview.

What context for Poincaré’s proof ? “Site technique” points to potential theory

Interestingly, though, what Poincaré did not emphasise is the topological part on which we

concentrated: the link between spaces of four dimensions and coverings with at most five

intersecting balls plays a fundamental role in the proof, yet it is used without proof or

commentary. This specific engagement with topology and lack of comment on it call for a

detailed analysis.

Our main claim is that the technological context of Poincaré’s 1883 proof is primarily that

of German potential theory. There are several reasons why we wrote “technological” context

and not “theoretical” context. As to the theoretical context, we cannot come up with

something much more specific than “theory of functions”. This is the section in which

Poincaré placed this paper in his 1901 overview; to be more specific, he placed it in the

paragraph on “Théorie générale des fonctions de deux variables” (Poincaré 1901: 70), as

opposed to general results on functions of one variable, and to results on abelian functions. If



we stick to the 1883 paper, an overview of the names of mathematicians Poincaré mentioned

points to a twofold context11:  first, a “théorie générale des fonctions” context, with

Weierstrass (for the origin of the question tackled and for techniques which help establish the

convergence of some power-series in several variables), Mittag-Leffler (for convergence

techniques), and Sonya Kowalevksy (for a theorem on analytic continuation in several

variables (Poincaré 1883b: 154)); second, a potential theory context, with Klein, Kronecker

(Poincaré 1883b: 148) and Schwarz (Poincaré 1883b: 152).

A more specific lead is given by the technical way in which the problem is laid out and

tackled. We shall use the term site techniques12 to denote the various ways in which functions

are studied in terms of their interaction with a site or domain13; this notion does not call for a

more technical definition, but we claim it is useful to study the growing awareness in 19th

century mathematics of the importance of “where functions live”, and to document the slow

accumulation of techniques and vocabulary used by mathematicians to explore the interaction

between functional objects and domains/sites. One may feel that there is no need to coin such

an awkward term for what can be (and has been) studied as the rise of topology in late 19th

century and early 20th century mathematics. This “rise of topology” description seems to be

less fit for our purpose, however, for several reasons: one general methodological reason, is

that “rise of topology” points to a specific body of knowledge that would emerge later, thus

leaving us with the somewhat unattractive task of exploring “vague” or “naive” topological

reasoning; this “topology before topology” description rests on the unilluminating back

projection of topology as a theory (a set of concepts, definitions and theorems), on specific

forms of know-how (in problem solving) and awareness (as to the role of particular aspects in

specific problems). Another important reason is that what we describe as late 19th century site

techniques would not lead to topology in the strict sense, even if “topology” is thought of as

encompassing both point-set and algebraic topology (which is already quite a stretch).

Evolutions in site techniques would lead equally well to our very elementary notions of subset

intersection and union14; to set products also. When studied in context, these techniques

cannot be thoroughly separated from the non-topological context: it is common historical

knowledge that the study of real or complex functions led 19th century mathematicians to very

                                                          
11 It is worth mentioning that no French mathematicians are mentioned.
12 We originally used “techniques du lieu” in French.
13 We shall use “site” rather than “domain”, since the latter now has a standard, elementary yet technical
meaning in set theory. “Site” is also used in topos theory of course, but confusion seems less likely.
14 See chapter 5 in (Chorlay 2007).



different site techniques, the real case roughly leading to point-set topology15, the other one to

combinatorial then algebraic topology; with its emphasis on know-how and awareness, the

“site techniques” approach allows for a more fine-grained tracking of epistemic cultures and

research fields (Goldstein and Schappacher 2007: 52 and fol.).

We will use this approach in the case of Poincaré’s 1883 paper. It exemplifies a specific

technique which can (loosely) be described this way: starting from “data” given in an open

covering, try to “glue” them together by dealing with whatever may come up in the overlaps;

or, in modern notation and when only two open subsets U and V are considered, study U∩V in

order to reach a conclusion about U∪V. For the 21st century reader, this may not sound very

specific: the approach is standard in the definition of major classes of objects (manifolds of

various types, sheaves etc.) and in the tackling of a great wealth of problems. But this

technique was by no means “standard” in 1883; we can give here but general elements to back

this claim16. Another site technique was becoming standard in the theory of complex

functions, which consisted in a coherent family of rationally linked site techniques. After

Cauchy and Riemann, cutting techniques had become widely available for the study of multi-

valued complex analytic functions. When the multi-valuedness is at most denumerable, the

function can be used to “unfold” the cut domain into a new domain; on this unfolded domain,

the reciprocal of the former function shows some kind of periodicity, or, more precisely, is

left invariant under the action of a group. In this case, the unfolded domain is endowed with a

tiling made up of elementary domains for the discrete group action. Considering the analytic

continuation along a curve, cutting a domain, crossing a cut, unfolding a domain, tiling a

domain … those are techniques that were available to Poincaré in complex function theory

and on which he relied on other occasions, in particular in his work on fuchsian functions

((Scholz 1980), (Gray 1986)). Within this set of techniques, the intersections of two adjacent

elementary domains for the group action are of non-null codimension, which entails a

completely different approach to that of open overlaps.

“Adjacent but not overlapping” is also the case in a different, less common site technique,

namely that of cellular decomposition. It can be found, in particular, in Poincaré’s qualitative

work on curves defined by an ordinary (non linear) differential equation ((Poincaré 1881),

(Poincaré 1885)). Other less widespread site techniques can be documented, for instance in

Schwarz’s work on conformal equivalence, in which (in modern parlance) an open subset of

                                                          
15 Though, as we mentioned above, Weierstrass developed notions which would later build up the core of point-
set topology in the context of complex analysis.
16 See (Chorlay 2007), chapters 1 to 5.



the complex plane is approximated by a growing sequence of compact unions of finitely many

squares (Schwarz 1890 114); a daring variant of this approximation method is used in

Poincaré’s first proof of his uniformisation theorem for analytic functions (Poincaré 1883a).

To the best of our knowledge, the specific context of the “U∩V, U, V, U∪V” site technique,

is that of potential theory; more precisely: that of the proof methods which H.A. Schwarz and

C. Neumann introduced in potential theory around 1870. These methods were developed as

alternatives to Dirichlet’s and Riemann’s minimising proof methods in potential theory,

whose weakness had been exposed by Weierstrass (Weierstrass 1870). We need not go here

into a description of both Neumann’s and Schwarz’s methods, since the basic principle of

what Neumann called his “combinatorial methods” (Neumann 1884: vi) is the same as that of

Schwarz’s proof by the “alternating process” (“alternierendes Verfahren”, see, for instance

(Schwarz 1890: 133-143)). The problem to be solved is Dirichlet’s problem in two real

variables: to find a potential function defined inside a plane domain D (assumed to be

bounded) whose limit values on the boundary of D coincide with those of a given function.

Schwarz endeavoured to show that if the problem can be solved universally (i.e. for arbitrary

boundary conditions) on two overlapping domains T1 and T2, then it can also be solved for the

domain “made up” (“zusammengesetzt” (Schwarz 1890: 136)) of the two. The ekthesis relies

on the following figure:

The boundary values are known for L0 and L3 and a potential function is to be defined over

the domain which Schwarz denotes by T1 + T2 – T
* 17. Let k denote the lower bound of the

boundary values (k is assumed to be finite). The outline of the “alternating process” is  the

following: start with potential function u1, defined in T1 with boundary conditions given by

the original ones on L0 and k on L2; consider potential function u2, defined in T2 by the

original conditions of L3 and u1 values on L1; consider potential function u3, defined in T1 by

the original conditions of L0 and u2 values on T2 etc. Schwarz establishes that sequence (u2n)

tends to a potential function u’ in T1, sequence (u2n) tends to a potential function u’’ in T2, and

                                                          
17 This testifies to the fact that, for Schwarz, T1+T2 would not denote the union but rather a “sum” in which T*
would have multiplicity two.



that u’ = u’’ in T*. Thus, in spite of the fact that, after any finite number of steps, the potential

functions defined over T1 and T2 have a non-null difference in T*, this difference vanishes

after an infinite number of steps. Schwarz compares his proof schema to the mechanical

principle of a two-cylinder vacuum pump: air is drawn out of a central compartment by the

successive actions of two adjacent cylinders18.

Poincaré’s finite alternating sum associated with a covering of R4 by balls is only a variant

of this site technique. There is more than a formal analogy: Schwarz’s work on potential

theory is one of the main body of results on which Poincaré drew in several papers he wrote

in 1883 (we mentioned (Poincaré 1883a) above); in the one we are studying, he explicitly

mentioned the fact that his proof of Dirichlet’s principle for balls in four-dimensional space

could be used à la Schwarz in order to prove Dirichlet’s principle for more general domains

(Poincaré 1883a: 152). Poincaré would later devise his own general existence theorem for

potential functions, with his sweeping-out method (“méthode de balayage”), which combines

the use of a covering by denumerably many balls (as in his 1883 paper) and a limiting process

modelled after Schwarz’s and Neumann’s alternating processes. The 1883 paper is directly

echoed in Poincaré’s 1898 paper Sur les propriétés du potentiel et les fonctions abéliennes

(Poincaré 1898): the aim of the latter paper is to establish the analogous representation results

for maximally periodic meromorphic functions in several complex variables (abelian

functions). After an ekthesis which is exactly the same as that of the 1883 paper (Poincaré

1898: 228), and a proof that goes along the very same lines, the resulting theorem contains

additional information, because of the periodicity of the meromorphic functions: for a given

system of periods, maximally periodic meromorphic functions in several complex variables

can be written as quotients of generalised Θ function, i.e. entire functions such that Θ(zi+ai) =

Θ(zi) e
U (where, (ai) is a period and U a linear function in (zi) (Poincaré 1898: 241)). As the

title of the 1898 paper indicates, this theorem is given as an application of potential theory

methods.

A standard technique when dealing with manifolds ?

Our claim about the specific link between this site technique and a coherent family of proof

schemes in potential theory may seem questionable to a 21st century reader. Is it not, after all,

                                                          
18 “In order to prove this proposition, a limiting process can be used which is very analogous to the one with
which vacuum is created by a two-cylindre air pump” . “Zum Beweise dieses Satzes kann ein Grenzübergang



the standard way to define geometric objects of the manifold type ? Scholz’s work on the

emergence of the manifold concept from Riemann to Poincaré shows that dealing with (open)

intersections and gluing patches were not standard site techniques in this context, whereas

cutting, unfolding, gluing together edges of the fundamental domain of a group action etc.

were (Scholz 1980). We claim that, from a historical viewpoint, things went the other way

around: our standard site techniques for defining manifolds derive, to a large extent, from site

techniques in potential theory, via uniformisation theory. Let us mention but two significant

pieces of evidence.

The first is given by Poincaré’s 1908 paper Sur l’uniformisation des fonctions analytiques

(Poincaré 1908). Poincaré’s main goal was to give a new and less sketchy proof of his general

uniformisation theorem for arbitrary analytic functions in one complex variable; several

aspects of the original 1883 proof had met with criticism from Hilbert and W.F. Osgood

(Poincaré 1908 §1). The new and improved proof required two significant changes: one in the

definition of the auxiliary surface (which would later be called a universal covering of a

Riemann-uniformising surface over the plane domain of the multi-valued analytic function),

and one in the existence proof of an analytic function mapping this abstract surface onto a

plane domain in a one-to-one and unramified manner. The first part of the 1908 paper is

dedicated to a general definition of analytic domains “over” the complex plane, generalising

Riemann surfaces. To the best of our knowledge, it is the first time that a general theory of

Riemann analytic surfaces over the complex plane (“domaines D”) was expounded in terms of

open coverings and gluing rules19. On the basis of this definition, Poincaré defines the notion

of equivalence of D-domains, the notion of sub-D-domain (Poincaré 1908 §2) and, two

paragraphs down, the notion of “multiple” of a D-domain (i.e. covering space (Poincaré 1908

§4)). However, this general theory is not what Poincaré is after. In fact, it is completely

ancillary to the series of results given in the second part of the text: these existence results for

analytic functions are all obtained by the sweeping-out method, and the general theory of D-

domains is thoroughly modelled by the requirements of this proof method.

The second piece of evidence comes from Hellmut Kneser’s 1926 report on the topology of

manifolds (Die Topologie der Mannigfaltigkeiten (Kneser 1926)20). In this paper, Kneser’s

                                                                                                                                                                                    
dienen, welcher mit dem bekannten, zur Herstellung eines luftverdünnten Raumes mittelst einer zweistiefeligen

Luftpumpe dienenden Verfahren grosse Analogie hat.” (Schwarz 1890: 136).
19 Of course, one could argue that Poincaré’s presentation is a mere elaboration on Weierstrass’ definition of
analytic functions based on function elements and analytic continuation.  This is undoubtedly a core background
element, but (1) its relation to the technique we are documenting is only indirect (2) other techniques can be
based (and were based) on the idea of analytic continuation.
20 It evolved from a 1924 talk.



goal was to compare the merits of the combinatorial approach and the purely topological

(“rein topologisch” (Kneser 1926: 1)) approach in the definition and study of topological

manifolds; also to build bridges between the two. On the purely topological side, he started

from Hausdorff’s axioms for a general topological space, then added the relevant axioms on

the local topological equivalence with an open ball in numerical space (Kneser 1926: 2-3).

The main consequence he drew from this definition is a unified way of generating a

topological manifold: for an object that satisfies the axioms, a complete description is given

by a covering by open subsets Ui (each of which is homeomorphic to a ball Vi), and

homeomorphisms between those parts in Vi and Vj which correspond to the open intersection

of Ui and Uj; Kneser claims it is clear that this analysis can also lead to synthesis –  i.e. that a

manifold can be defined from a family of open balls and partial homeomorphisms –, though

without using any “gluing” metaphor for this synthesis process (Kneser 1926: 4). This

description has since become standard, since it is the starting point in Veblen and Whitehead’s

1932 Foundations of Differential Geometry (Veblen and Whitehead 1932). But in 1926 the

description was by no means standard when dealing with the topology of manifolds, as

Kneser’s comment shows:

This mode of presentation is none but the “roof-tile covering”, which is well-known

from function theory. However useful it may be there, it has a drawback with regard to

our topological purpose, namely that the mapping between Vik and Vki is, to a large

extent, arbitrary. There is no such drawback in another mode of presentation, which

can be referred to by the key-word “border pairing”. 21

Open coverings – which entails open intersections – are still referred to the context of

uniformisation theory, whereas the  more familiar (and, in 1926, efficient) combinatorial

viewpoint relies on “cutting” (“zerlegen” (Kneser 1926: 4)) and identifying edges of

generalised polyhedra according to non-“arbitrary” rules (usually derived from a group

action)22.

                                                          
21 “Diese Darstellungsweise ist nicht anders als die aus der Funktionentheorie bekannte “dachziegelartige
Überdeckung”. So brauchbar sie dort ist, für topologische Zwecke hat sie den Mangel, dass in sie die
Abbildungen zwischen Vik und Vki, also in weitem Masse willkürliche Funktionen eingehen. Frei von diesem
Mangel ist eine andere Darstellungsweise, die durch das Schlagwort “Ränderzuordnung” bezeichnet werden
kann.” (Kneser 1926: 4) This arbitrariness element, which Kneser deplores, will be the cornerstone of Veblen
and Whitehead’s idea of manifold structureS (plural) : specify a pseudo-group (a notion which they introduced)
and you get a specific structure on the manifold you build up (topological, differentiable, analytic, riemannian or
pseudo-riemannian, conformal structures etc.).
22 Our point is not that Kneser’s description in terms of open coverings and gluing rules was a major,
unprecedented and bewildering breakthrough; his comment helps us point to the fact that this type of description
was by no means standard in the 1920s, and that it was still clear at the time that it comes from complex function
theory. The fact that this site technique was not standard in topology in the 1920s does not prove, however,  that
it was not familiar in other theoretical contexts in which “spaces” or “manifolds” play a major part. In the



Problem form and problem label

To insert Poincaré’s 1883 paper on meromorphic functions in two complex variables into

our long-term narrative, the questions of the identification of a general problem form, and of

the use of a specific problem label remain. No such things are to be found in the 1883 paper

itself, and we shall see that this is a general feature of Poincaré’s work.

It seems all the more surprising than it is difficult, for the 21st century reader, to study the

young Poincaré’s work (say, between 1880 and 1885) without using “global” or “from local

to global” as core descriptive terms. Along with the paper we focused on, we should mention

three other major contributions to global mathematics in this period; we will be brief, since

these aspects of Poincaré’s work have been studied in detail elsewhere23. In 1883, we find

Poincaré’s paper Sur un théorème général de la théorie des fonctions (Poincaré 1883a) which

we mentioned before. Consider two complex variables X, Y, linked by an analytic relation

which implicitly defines Y as a multi-valued function of X; Poincaré “proved” that there exists

an auxiliary complex variable Z such that X and Y are single-valued analytic functions of Z. In

a daring generalisation of Riemann’s ideas, Poincaré first built up an abstract analytic surface

over the X plane, such that (1) Y is a uniform function of the surface generic point, and (2) the

surface is simply connected24. He then used variants of Schwarz’s potential-theoretic methods

(not the alternating method, however) to prove that the abstract analytic surface is equivalent

to an open disc in a complex plane, the generic point of which will be denoted by Z. As we

mentioned earlier, several points of this 13-page paper seem questionable; the 1908 paper on

the same topic would be 70 pages long, and would rely on different techniques for the

construction of the surface and the existence proofs in potential theory; the proof-scheme

remains the same, however. A generation later, these uniformisation theorems would be listed

among those of a clearly “global” (im Grossen) nature25.

                                                                                                                                                                                    
context of differential geometry, it can be shown that this site technique cannot be found in Weyl’s or Cartan’s
papers on differential geometry (cf. chapter 11 in (Chorlay 2007)). In the early 1920s, there is one context in
which it was standard when defining the differential manifolds, namely that of Birkhoff and Morse’s works on
dynamical systems and the calculus of variations in the large. This technique can be traced directly to Poincaré,
via Hadamard’s paper on geodesics on surfaces of negative curvature (cf. chapters 8 and 10 in (Chorlay 2007)).
23 See (Gray 1986), (Scholz 1980).
24 Poincaré gave only a sketch of how this surface is to be defined, but his idea was clearly that of considering
classes of paths modulo equivalence relations (one depending on the behaviour of multi-valued function Y, then
another one to ensure simple connectedness)
25 This description of  uniformisation theory as tackling a general problem form (namely, to start from
uniformisation theorems im Kleinen and strive for uniformisation theorems im Grossen) can be found in
Osgood’s Cambridge Colloquim Lectures (Osgood 1899: 70) and in Weyl’s Idee der Riemann’schen Fläche

(Weyl 1919: 141).



More precise uniformisation results are reached in the case of algebraic functions and

solutions of linear differential equations with rational coefficients, in Poincaré’s papers on

fuchsian groups (e.g. (Poincaré 1884)). Not only is the problem of a global nature, but its

solution led Poincaré and Klein to a new proof technique that would later become a standard

tool when tackling global problems26, namely the “méthode de continuité” (Klein’s

“Continuitätsbeweis”). To put it briefly27: in order to establish that a natural one-to-one map

between two (connected) parameter spaces is also onto, Poincaré and Klein attempted to show

that its image is both open (using local inversion arguments) and closed (which led Poincaré

to “compactify” of the first space, a point which Klein apparently missed)28.

The third group of works that should be mentioned to establish the fact that Poincaré’s early

work is epoch-making in the history of global mathematics, is that on the qualitative theory of

curves defined by a differential equation29. He engaged in 1881 in a series of studies on non-

linear ordinary differential equations in two real variables 0,, =







dx

dy
yxF  (F a polynomial).

To give just one of the first results: starting from his (local) classification of singular points

and his definition of their index, Poincaré established a numerical link between the number of

singular points of the differential equation and the topological genus the surface defined by

equation F(x,y,z) = 0 (Poincaré 1885). This work would also later be considered as

paradigmatic of what mathematics “in the large” is30.

Yet, to the best of our knowledge, Poincaré never pointed to a general common form of

these various problems and proof-schemes. Although he often stressed, from his earliest

works, that he would not restrict his study of the behaviour of functions to a neighbourhood of

their singular points31, he never coined a general term to describe a wide family of problems.

                                                          
26 For instance, when Weyl used the same kind of purely topological techniques in 1925, in the context of Lie
groups theory, he still referred to the method as “Kontinuitätsmethode” (Weyl 1925: 629).
27 See (Scholz 1980) and (Gray 1986).
28 This one-sentence summary uses topological vocabulary that was alien to Poincaré and Klein. A less
anachronistic description of their proof scheme would be : they use a reductio ad absurdum, claiming that if the
map was not onto, the  boundary of the image subset would be both empty and non-empty.
29 For a general study on this topic, see (Gilain 1991).
30 For instance, this work is the only example of differential geometry “in the large” that Struik gave in his 1933
MIT talks on the history of differential geometry from the 17th to the 19th century (Struik 1933b: 188).
31 The non-local nature of the goal is stated in the clearest of ways in the introduction to the series of papers on
the qualitative study of curves defined by a differential equation : “Rechercher quelles sont les propriétés des
équations différentielles est donc une question du plus haut intérêt. On a déjà fait un premier pas dans cette voie

en étudiant la fonction proposée dans un voisinage d’un des points du plan. Il s’agit aujourd’hui d’aller plus loin
et d’étudier cette fonction dans toute l’étendue du plan.” (Poincaré 1881: 3) (Poincaré’s emphasis). Poincaré
once explicitly used the term “problème local” in his 1907 paper Les fonctions analytiques de deux variables et
la représentation conforme (Poincaré 1907), but did not go beyond this “local” use.



In the period 1901-1912, Poincaré had many occasions to reflect on his scientific career (as

in his 1901 overview of his mathematical work), on the nature of mathematics, and on its

future problems (as in his 1909 ICM talk on L’avenir des mathématiques (Poincaré 1909)).

Lines such as:

My time will not have been wasted (…) if this very fumbling eventually showed me

the deep analogy between the problem I just dealt with, and a much more extended

class of problems; if they showed me the likenesses and differences; if, in a word, they

gave me a glimpse of possibilities for generalisation. 32

did not refer to global problems. When, in the same 1909 talk, he gave examples of

concepts that would clearly play an important role in future mathematics, he first mentioned

uniform convergence, then groups and invariants.

As to his views on the nature and role of topology, they would prove stable, from his

celebrated 1895 Analysis situs paper (Poincaré 1895) to his more epistemological writings on

the nature of mathematical knowledge. Analysis situs is consistently described as a form of

hypergeometry (i.e. dealing with spaces and forms of dimension greater than three (Poincaré

1909: 181)); and as a qualitative geometry, meaning non quantitative (i.e. in which exact

measurement is not of the essence) and stable by deformation (hence the idea of a geometry

fit for poorly drawn figures) (Poincaré 1901: 100).

In 1912, Hadamard would stress the fact that the will to go beyond local properties of

functions is the main and central feature of Poincaré’s mathematical work ( Hadamard 1912:

1922)33. To Hadamard, this central feature would, in turn, explain why analysis situs played

such an important role in so many parts of Poincaré’s work (Hadamard 1912: 1864). However

obvious all this might have appeared to Hadamard in 1912, it is nowhere to be found in

Poincaré’s writings.

The “Cousin problems”, from Cousin (1895) to Oka (1938)

A family of three

                                                          
32 “Je n’aurai pas perdu mon temps (…) si ces tâtonnements mêmes ont fini par me révéler l’analogie profonde
du problème que je viens de traiter avec une classe beaucoup plus étendue de problèmes ; s’ils m’en ont montré à
la fois les différences et les ressemblances, si en un mot ils m’ont fait entrevoir les possibilités d’une
généralisation.” (Poincaré 1909: 169)
33 For Hadamard, the page numbers refer to the collected works (Hadamard 1968).



In contrast with Poincaré, who singled out and generalised one theorem from Weierstrass’

coherent list of results on the theory of single-valued functions defined over the complex

plane, Cousin brought together three problems to make one coherent family. The first two – to

find a regular function with given zero-locus, and to represent a meromorphic function as a

quotient of two regular function – had already been studied together, as it was clear that

solving the first was the key to solving the second. Cousin added to the family Mittag-

Leffler’s famous theorem:

Let there be given:

1° An infinite sequence of distinct values a1, a2, a3,…,  subject to the condition

;
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∞=

∞=

ν
νa

2° An infinite sequence of entire fractions, rational or transcendental, of variable y,

all of which vanish for y = 0:
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34 “Je suppose données :
1° Une suite infinie de valeurs a1, a2, a3,…, toutes inégales et assujetties à la condition
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In the introduction to his 1895 thesis Sur les fonctions de n variables complexes (Cousin

1895), Pierre Cousin comments:

Two important theorems by Mr. Weierstrass can be regarded as successive

consequences of Mr. Mittag-Leffler’s theorem; the first one pertains to the existence of

an entire function whose zeroes are given in advance; the second one pertains to the

expression as a quotient of two entire functions, of a function in one variable whose

singular points are but poles. These three theorems make up a set of three propositions

which are closely tied together. 35

There are various ways in which the family of three can be tied together, and Cousin is by

no means the first to consider that the first theorem (on singularities) implies the second (on

zeroes). For instance, Paul Appell had given in 1883 a generalisation of Mittag-Leffler’s

theorem to the two complex variables case (Appell 1883): starting with a sequence f1(x,y),

f2(x,y),…,fν(x,y)… of analytic functions (defined over C
2
 but for singularities), whose singular

locus goes to infinity36, he defined a function f, over C2, with the same singular locus and

such that f-fν is regular where fν is singular
37. Both the ekthesis – in terms of singular locus

that goes to infinity – and one-page proof – add the fν and use Weierstrass’ trick to deal with

convergence problems – are direct offshoots of Mittag-Leffler’s. Appell then formulated the

analogous problem: starting from  a sequence of entire functions g1(x,y),

g2(x,y),…,gν(x,y),…whose zero-locus goes to infinity, and a sequence k1,k2,…,kν,… of natural
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Il est alors toujours possible de former une fonction analytique F(x), n’ayant d’autres points singuliers que a1, a2,

a3,…, et telle que, pour chaque valeur déterminée de ν, la différence 
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une valeur finie et déterminée, de telle sorte que, dans le voisinage de x = aν, F(x) puisse s’exprimer sous la
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”     (Mittag-Leffler 1882: 414). Mittag-Leffler had given a first proof of a slightly

less general theorem in 1976. An overview of his work on one-valued analytic functions in one complex variable
can be found in Sur la représentation analytique des fonctions monogènes uniformes d’une variable

indépendante, Acta Math. 4 (1884), p.1-79.
35 “Deux théorèmes importants de M. Weierstrass peuvent être considérés comme des conséquences successives
du théorème de M. Mittag-Leffler; le premier est relatif à l’existence d’une fonction entière admettant pour zéros
des points donnés à l’avance; le second est relatif à l’expression sous forme d’un quotient de deux fonctions
entières d’une fonction d’une variable n’admettant comme points singuliers que des pôles. Ces trois théorèmes
forment un ensemble de trois propositions intimement reliées entre elles.” (Cousin 1895: 1)
36 Appel expresses this condition in the following way : “ (…) for all values of ν greater than a positive integer
µ, a positive number aν can be assigned so that function fν(x,y) remains holomorphic as long as the moduli of x
and y remain less than aν; moreover, number aν increases indefinitely with ν.” “ (…) pour toutes les valeurs de ν
supérieures à un entier positif µ, l’on peut assigner un nombre positif aν tel que la fonction fν(x,y) reste

holomorphe tant que les modules de x et y restent inférieurs à aν ; de plus ce nombre aν augmente indéfiniment

avec ν.” (Appel 1883: 71)
37 At least if fν is the only function in the sequence which is singular at this point (Appel 1883: 72).



numbers, find an entire function G with the same zero-locus and such that ν
ν
k

fG /  is regular

and non-null where fν vanishes
38. As to the proof, one line is enough:

To prove these propositions, it is enough to apply the theorem from §1 to the

function
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As we saw earlier, the idea of using logarithms to pass from theorems on singular-loci to

theorems on zero-loci had been used by Poincaré (in a different technical context however); it

would be used by Cousin, who explicitly referred to both Poincaré and Appell.

What unites the three theorems, in Cousin’s thesis, though, is not that the second is a

straightforward consequence of the first (on simple domains such as C2), but that both are

consequences of a single fundamental theorem (“théorème fondamental”).

A “fundamental theorem” with three corollaries

The proof of this fundamental theorem would make up the first two of the the four

paragraphs of the thesis. Before we state it, let us make clear what functions and domains

Cousin chose to deal with. The domains are what would later be called polycylinders: the n+1

complex variables are independent, each of them varies its own complex plane, in domains

bounded by n+1 “contours fermés, simples ou complexes” (Cousin 1995: 4). As to functions,

they do not have to be regular throughout the domain, but they are subject to two constraints:

they are “monotropes”, which means their value at a point is left unchanged after analytic

continuation around a loop in the domain40; they are  “sans espace lacunaire”:

                                                          
38 Again : at least if no other function in the sequence vanishes there.
39 “Pour démontrer ces propositions, il suffit d’appliquer le théorème du §1 à la fonction 
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.”  (Appel 1883: 74)

40 The term « monotrope » comes from the standard French textbooks by Briot and Bouquet. For instance : “Let
us assume that point z is bound to stay in a determinate part of the plane; if all paths from initial point z0 to any
point z (fig. 4), located in that part, lead to the same value for the function, we shall say that the function is
monotropic in that part of the plane”; “Supposons que le point z soit astreint à rester dans une partie du plan
déterminée; si tous les chemins qui  vont du point initial z0 à un point quelconque z (fig.4) situé dans cette partie

conduisent à la même valeur de la fonction, nous dirons que la fonction est monotrope dans cette partie du
plan.” (Briot and Bouquet 1875: 10)



The later condition means precisely that, if M denotes any point in the region at

hand, there exists a point which is as close to M as one wills, for which the function is

regular. 41

The fundamental notion is that of equivalent functions:

If two such functions are simultaneously defined inside the same partial area, and if

their difference is regular at all points in this area, I shall say that the two functions are

equivalent in this partial area; if their difference is regular at a point, the two functions

are equivalent at this point. 42

Cousins considered functions in n+1 variables; the first n variables x1,..,xn (collectively

denoted by x) have domain Γ, which is the product of n plane domains bordered by closed

curves γ1,…,γn. The last variable is denoted by y, its domain is denoted by S and is cut in a

finite number of subdomains R1,…,Rp, each of which being bordered by a simple (i.e. non

self-intersecting) closed curve43.

To each region Rp I associate a function fp(x,y) of the (n+1) complex variables

x1,…,xn, y, defined for x interior to Γ and for y interior to a boundary line ℜp enclosing

Rp (…); one also assumes the following: if Rp and Rn are two contiguous regions, ℜp

and ℜn have in common a partial area where both functions fp(x,y) and fn(x,y) are

defined; one assumes that these two functions are equivalent in the partial area where

both are defined; 44

We are now ready to state the:

Fundamental theorem. There exists a function F(x,y), monotropic and without

lacunary space, defined for x interior to Γ and y interior to S, and which, at every point

interior to S, is equivalent to the function associated to that point. 45

                                                          
41 “Cette dernière condition signifie d’une façon précise que si M désigne un point quelconque de la région
considérée, il existe un point aussi voisin que l’on veut de M pour lequel la fonction est régulière.” (Cousin 1895:
10)
42 “Si deux fonctions de cette nature se trouvent définies simultanément à l’intérieur d’une même portion d’aire
et si leur différence est régulière en tout point de cette aire, je dirai que les deux fonctions sont équivalentes dans
la portion d’aire considérée; si leur différence est régulière en un point, les deux fonctions seront équivalentes en
ce point.” (Cousin 1895: 10)
43 The Rp domains are explicitly assumed to be simply connected (though Cousin never uses this term).
44 “A chaque région Rp je fais correspondre une fonction des (n+1) variables complexes x1,…,xn,y, fp(x,y) définie
pour x intérieur à Γ  et pour y intérieur à un contour fermé ℜp enveloppant Rp (…); on fait de plus l’hypothèse
suivante : si Rp et Rn sont deux régions contiguës, ℜp et ℜn ont une portion d’aire commune où les deux fonctions
fp(x,y) et fn(x,y) sont simultanément définies; on suppose que ces deux fonctions sont équivalentes dans la portion
d’aire où elles sont simultanément définies;” (Cousin 1895: 11)
45 “Théorème fondamental. Il existe une fonction F(x,y) monotrope sans espace lacunaire définie pour x intérieur
à Γ et y intérieur à S et qui, en chaque point intérieur à S, est équivalente à la fonction correspondant à ce point.”
(Cousin 1895: 11).



Although the theorems to be proved concern functions in several variables and open

coverings, Cousin relies solely on single-variable techniques (which is possible in

polycylinders), and on somewhat standard site techniques such as cuttings46. The relative

positions of the Rp subdomains in the y-plane is described in terms of common boundary

curves, lnp denoting the curve (or curve components) bordering Rn and Rp; the standard

situation is given by the following figure (Cousin  1895: 13):

In a neighbourhood of lnp, both fn and fp are defined and their difference fn-fp is regular.

Cousin’s tactics was to define, on what we would denote Γ×S, a multi-valued function Φ that

is single-valued47 in each Γ×Rp and such that its analytic continuation when cut lnp is crossed

undergoes a jump of fp-fn. Adding this difference-balancing function Φ to the fp gives the

required single-valued function F. Now, paragraph one is devoted to expounding the

techniques for constructing difference-balancing functions of this type. Cousin used standard

single-variable techniques by combining jump-functions defined by a parameterised line

integral: first, the classic
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Special attention is paid to the behaviour of such functions at vertices (such as point A in

the above figure).

After completing the proof of the fundamental theorem, Cousin showed how a slight

change in the proof can lead to the solution of a different problem:

                                                          
46 In his 1914 report on the theory of functions of several complex variables, Osgood wrote that Cousin’s proof
was « more elementary » than Poincaré’s (Osgood 1914: 44).
47 To be more precise : multi-valued but with separate branches.



The theorem we have just proved pertains to monotropic functions with no lacunary

space; it can be extended to non-monotropic functions of a specific nature, namely

these functions which are logarithms of regular functions. 48

If to each Rp subregion one ascribes a function up(x,y), regular in Γ×Rp, such that, in the

overlaps, quotient up/un is regular and non-vanishing, the former proof applies to fp = log up.

Every step of the way (even in the definition of fp), one works up to additive constants of type

2ikπ (where k is an integer). It doesn’t matter since, in the last step, only the exponentials

appear. Thus it is established that:

There exists a regular U(x,y) which is regular at every point (x,y) interior to (Γ,S),

and such that at any point interior to S its quotient by the function up(x,y) associated to

this point is regular and different from 0 at that point. 49

The correctness of this conclusion would be questioned by Gronwall, as we shall see below.

Once the fundamental theorem and its logarithmic variant have been proved, Cousin moves

on to establish the n-variable, polycylindral analogues of Mittag-Leffler’s theorem (on

singularities), Weierstrass’ theorem (on zeroes) and Poincaré’s theorems (on the

representation of meromorphic functions). Since – once the logarithmic variant of the

fundamental theorem is granted – the proofs of theorems 2 and 3 are just variants of the first

one50, we need only to present the laying-out and the proving of the analogues of Mittag-

Leffler’s theorem.

Just like Poincaré’s, Cousin’s ekthesis exhibits what would later be called the “from local to

global” problem form; S denotes an open polycylinder, Γa,b,…,c,d,e denotes a product of disks

centered on point (a,b,…,c,d,e) and interior to S:

I intend to show that if […], at every point (a,b,..,c,d,e) interior to S, a function

fa,b,..,c,d,e(x,y,…,z,t,u) is given, which is monotropic and without lacunary space inside

Γa,b,…,c,d,e; and if the given functions satisfy the above stated condition, then there

                                                          
48 “Le théorème qui vient d’être démontré relativement à des fonctions monotropes et sans espaces lacunaires,
peut être étendu à des fonctions non monotropes d’une nature particulière: je veux parler des fonctions qui sont
les logarithmes de fonctions régulières.” (Cousin 1895: 16)
49 “Il existe une fonction U(x,y) régulière en tout point (x,y) intérieur à (Γ,S) et telle que en un point quelconque
intérieur à S son quotient par la fonction up(x,y) qui correspond à ce point est régulier et différent de 0 au point
considéré.” (Cousin 1895: 20).
50 This doesn’t mean they show no real extra content, quite the contrary.  For instance, when dealing with the
represenation of meromorphic functions as quotient of regular functions, Cousin uses Weierstrass’
Vorbereitungssatz and proves the existence of an irreducible representation (Cousin 1895: 32).



exists a function F(x,y,…,z,t,u), monotropic and without lacunary space inside S,

which, at every point interior to S, is equivalent to the function given at this point. 51

The condition being:

If the point (a’,b’,…,c’,d’,e’) is close enough to (a,b,…,c,d,e) so as to be interior to

circle Γa,b,…,c,d,e, the two functions

fa,b,…,c,d,e(x,y,…,z,t,u) and fa’,b’,…,c’,d’,e’(x,y,…,z,t,u)

must be equivalent at the point (a’,b’,…,c’,d’,e’). 52

To prove this result and its variants, Cousin had to overcome the following difficulty: the

fundamental theorem deals with domains whose components are compact53, but the results he

aimed at should hold for domains whose components need be neither closed nor bounded. He

proceeded in three steps: first, in two variables, he proved his existence theorems over

bounded polycylinders interior to S; step two is a straightforward generalisation to any

number of variables; step three deals with the non-compact case and mainly relies on uniform

approximation over compact subsets by rational functions (Cousin 1895: 38 and fol.).

Gronwall finds fault with Cousin’s reasoning

In 1913, T.H. Gronwall presented to the American Mathematical Society a talk54 which on

which he would base a later paper On the Expressibility of a Uniform Function of Several

Complex Variables as the Quotient of Two Functions of Entire Character (Gronwall 1917). In

this paper, he gave a critical presentation of Cousin’s work (§§1 and 2) and presented some

personal results (§3). For the first part, Gronwall had worked with W.F. Osgood – who was

working on his general survey on the theory of functions of several complex variables

(Osgood 1914) – to locate the flaw in Cousin’s reasoning: “The author wishes to acknowledge

his indebtedness to Professor Osgood, to whom he communicated the example of §3 in June,

1913, for material assistance in locating the gap in Cousin’s proof.” (Gronwall 1917: 53)55. So

                                                          
51 “Je me propose de montrer que si (…) on se donne pour chaque point (a,b,..,c,d,e) intérieur à S, une fonction
fa,b,..,c,d,e(x,y,…,z,t,u) monotrope et sans espace lacunaire à l’intérieur de Γa,b,…,c,d,e, et si les fonctions données
satisfont à la condition qui vient d’être explicitée, il existe une fonction F(x,y,…,z,t,u) monotrope et sans espace
lacunaire, définie à l’intérieur de S, et qui, en chaque point intérieur à S est équivalente à la fonction donnée en
ce point.” (Cousin 1895: 21)
52 “Si (a’,b’,…,c’,d’,e’) est un point assez voisin de (a,b,…,c,d,e) pour être intérieur au cercle Γa,b,…,c,d,e, les deux
fonctions fa,b,…,c,d,e(x,y,…,z,t,u) et fa’,b’,…,c’,d’,e’(x,y,…,z,t,u) doivent être équivalentes au point (a’,b’,…,c’,d’,e’).”
(Cousin 1895: 21)
53 “compact” is of course not part of Cousin’s terminology.
54 Cf. (Cole 1914: 173-174)
55 The corrected version of Cousin’s proof which Gronwall gave was devised in collaboration with Osgood
(Gronwall 1917: 54).



it seems that Gronwall’s work on functions of several complex variables first gave him an

example that contradicted Cousin’s theorem on the representation of meromorphic functions,

then worked with Osgood to locate the flaw and devise a proof for a restricted theorem.

Gronwall first summarised Cousin’s results, labelling his theorems A, B, and C: A for the

existence of an analytic function with given singularities, B for the existence of a holomorphic

function with given zeroes, C for the representation of a meromorphic function as a quotient

of relatively prime holomorphic functions56. He acknowledged the fact that Cousin’s proof of

theorem A is perfectly rigorous. Since he had a counter-example to theorem C, and C is an

easy consequence of B, there has to be a flaw in theorem B. He and Osgood eventually

located it in the logarithmic variant of Cousin’s “fundamental theorem”. The proof they gave

is exactly Cousin’s proof, they simply pointed to the fact that, when starting with fp = log up,

the jump-balancing function Φ need not be uniform (i.e. single-valued) in every Γ×Rn if Γ is

not assumed to be simply connected; they actually come up with an example (in the product

of two ring-shaped domains ½ < |z| < 2) where G = eΦ is multi-valued. Hence what Cousin’s

proof proves, according to Gronwall, is:

Let a function up(x,y) be given for every region Rp, uniform and holomorphic in

(S,Rp), boundaries included, and such that for any two adjacent regions Rn and Rp, the

quotient
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is holomorphic and different from zero in (S,Tnp)
57. Then there exists a function

G(x,y) holomorphic in (S,S’), uniform in (Σ,S’), where Σ is any simply connected part

of S, and such that in (S,Rp) (boundaries included except those y which are end points

of an lnp and lie on the boundary of S’) the quotient
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is holomorphic and different from zero. (Gronwall 1917: 53)

Cousin thought he had established this fact for any polycylinders but he had proved it only

for those polycylinders in which at most one of the components is not necessarily simply

                                                          
56 A conclusion which Gronwall formulated this way : “(…) this function may be expressed as a quotient of two
uniform functions holomorphic in S1,…,Sn and without common zero manifolds of higher dimension than 2n-2.”
(Cole 1914: 73). The presentation is more algebraic in (Gronwall 1917).
57 Tnp denotes an open neighbourhood of curve lnp.



connected58. Of course, this restriction as to what Cousin’s proof actually proves doesn’t

imply that what he thought he had proved is not the case. This is where Gronwall’s counter-

example comes into play: in the product of two ring-shaped domains, he exhibited a

meromorphic function that cannot be the quotient of two relatively prime (single-valued)

holomorphic functions59; if theorem C fails to hold for such domains, so does theorem B. The

final conclusion is:

Theorems B and C are valid when, and only when, n-1 of the n regions S1, S2,…, Sn

are simply connected; the remaining region may be simply or multiply connected.

(Gronwall 1895: 53)

Cousin’s proof relied on a patching argument that paid attention to only one of the

components of the polycylinder, and it seems his “up to a harmless integer multiple of 2iπ”

argument was flawed; however, Gronwall chose not to pinpoint exactly where the hitch lay in

Cousin’s proof, and formulated restrictive domain hypotheses which enabled him to avoid any

sort of multi-valuedness at any step of the proof. This paper also clearly shows that

topological properties play a part in theorems B and C which they don’t play for theorem A

(valid in any polycylinder): what part exactly ? Is the family-likeness of theorems A and B

altogether misleading ? That would be investigated later, as we shall see.

Enduring problems, indirect use

As to Cousin’s family of three problems, there is a striking contrast between the difficulty

of the problems and the ease of access to the questions. These questions are fairly

straightforward (at least when put informally, the precise ekthesis takes a little more work, but

not that much), clearly important, and have well-known one-dimensional analogues. They are

part of the standard list of topics that the theory of functions of several complex variables

addresses, as is shown by their integration in the classical monographs on the field: in

Osgood’s 1901 introductory overview on complex variables in Klein’s Encyclopädie (Osgood

1901: 112), in Osgood’s 1914 AMS Colloquim Lecture (Osgood 1914: 44 and fol.), in

Behnke and Thullen’s 1934 Theorie der Funktionen mehrerer komplexer Veränderlichen

                                                          
58 Cousin’s requirement that the functions be “sans espace lacunaire” doesn’t mean he considered only simply
connected components. He explicitly refers to “contours (…) à connexion multiple” (Cousin 1895: 38). He gets
more precise a few pages down the paper, in the two-variable case : “S désigne une aire connexe prise sur le
plan de la variable x et limitée par n+1 contours fermés simples C0, C1, C2,…,Cn, dont le premier C0 enveloppe S

et chacun des n autres est enveloppé par S (…). Les notations S’, C0’, C1’, …, Cm’ (…) ont une signification

analogue relativement au plan de la variable y.” (Cousin 1895: 50). See also (Cousin 1895:  55-56).
59 It can be written as the quotient of two, not relatively prime, one-valued holomorphic function, however.



(Behnke and Thullen 1934: chap.5). Yet no significant breakthrough took place in the period

from 1895 to 1934; the only event is of a restrictive nature, when Gronwall unexpectedly hit

upon a counter-example to problem C and, for theorems B and C, made it clear what

topological hypotheses should be imposed on the polycylinders for Cousin’s conclusions to

hold.

Before expounding what would later be seen as Oka’s breakthrough, let us mention two

early 1930s papers that dealt with the topic.

The first paper is Henri Cartan’s 1934 note to the French Académie des Sciences on Les

problèmes de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes

(Cartan 1934). This three-page note does not include proofs, but it shows that the three

problems can be used as tools to tackle another family of questions. Cartan first stated the

problems in a way that has not significantly changed since Cousin60, and used the following

labels: what Gronwall called “theorem A”, Cartan calls “Cousin’s first problem” (the additive

problem, for meromorphic functions, later denoted as “Cousin I”); Gronwall’s “theorem B” is

“Cousin’s second problem” (the multiplicative problem, “Cousin II”); Gronwall’s “theorem

C” is called “Poincaré’s problem” (quotient representation of meromorphic functions). If, for

a given domain D, Cousin’s first problem has a solution whatever the data are, one says that

Cousin’s first theorem holds for D. In the list of results stated in this note, only one is a direct

extension of Gronwall’s results; by direct extension we mean: either a proof that Cousin I

holds for a class of domains more general than that of polycylinders; or a proof that Cousin II

and Poincaré’s theorem hold for a class of domains more general than that of polycylinder

with at most one not simply-connected component. All but one of Cartan’s 1934 are indirect

results, which shows a shift of emphasis: the Cousin and Poincaré problems are used as tools

in order to help classify the various domains that the theory of functions of several complex

variable has come to deal with since Hartogs’ work. This indirect use is clear in the following

two examples, in two complex variables:

                                                          
60 For instance : “First Cousin problem.- Let us assume that the domain under study, D, is covered by an infinity
of partial domains Di, interior to D, and that, in every Di, a meromorphic function fi is defined; it is also assumed
that, whenever two domains Di and Dj have a common part Dij, the difference fi – fj is holomorphic in Dij. We
intend to find a function F, meromorphic in D, and such that in every Di the difference F – fi is holomorphic”;   
“Premier problème de Cousin.- On suppose que le domaine considére D est recouvert à l’aide d’une infinité

dénombrable de domaines partiels Di intérieurs à D, et que, dans chaque Di, on a défini une fonction

méromorphe fi; on suppose en outre que, chaque fois que deux domaines Di et Dj ont une partie commune Dij, la

différence fi-fj est holomorphe dans Dij. On se propose de trouver une fonction F, méromorphe dans D, et telle

que dans chaque Di, la différence F-fi soit holomorphe.” (Cartan 1934:  1285).



Theorem 1.- If the first Cousin theorem holds for D, D is a domain of holomorphy

(that is, the total domain of existence for some holomorphic function). 61

Theorem 3.- Let D be a domain in which the first Cousin theorem holds (…). If,

moreover, D is star, or if D is a Hartogs domain, then the second Cousin theorem

holds for D. 62

These theorems show no direct breakthrough, in the sense defined above, but show that the

Cousin and Poincaré properties have tractable relations with those of important classes of

domains: domains of holomorphy, domains of meromorphy, Hartogs domains, domains with

convexity properties (with respect to polynomial functions, rational functions, holomorphic

functions etc.), star domains, circle domains etc. This issue of domain classification is what is

at the heart of Cartan’s research programme in the 1930s, and it is not, as we shall see, a

personal quirk. The background for the 1934 note to the Académie des Sciences is Cartan and

Thullen’s 1932 paper Zur Theorie des Singularitäten der Funktionen mehrerer komplexen

Veränderlichen – Regularitäts- und Konvergenzbereiche (Cartan and Thullen 1932). It is

devoted to the definition and study of the holomorphic hull of a domain (Regularitätshulle)

and to its generalisation by the notion of convexity relative to a R-function  class (such classes

being defined by stability under partial derivation and raising to an integer power) (Cartan and

Thullen 1932: 627 and 629).

A similar but more detailed overview is given in 1937, in Behnke and Stein’s paper

Analytischen Funktionen mehrerer Veränderlichen zu vorgegebene Null- und

Pollstellenflächen (Behnke and Stein 1937). Though this report to the Union of German

Mathematicians (D.M.-V.) mentions two recent direct breakthroughs with Cousin’s problems

– one by Cartan and one by Oka – its greatest part is devoted to what we called an indirect

use: theorems, examples and counter-examples are given in order to show how “Cousin

properties” interact with various domain classifying properties. For instance, Behnke and

Thullen give the example of a domain in which Cousin II holds but not Cousin I (Behnke and

Stein 1937: 186). We saw in Cartan a link between Cousin I and domains of holomorphy;

Behnke and Stein comment on a result by Thullen which exhibits a (subtler) link between

Cousin II and holomorphy domains:

                                                          
61 Cartan showed in 1938 that the analogous theorem does not hold in three variables : he exhibited a domain
that has the Cousin I property but is not a domain of holomorphy, namely tricylindre |z1| < 1, |z2| < 1, |z3| < 1 with
point z1=z2=z3 removed (Cartan 1938).
62 “Théorème 1.- Si le premier théorème de Cousin est vrai pour D, D est un domaine d’holomorphie (c’est-à-
dire le domaine total d’existence d’une certaine fonction holomophe).” (Cartan 1934: 1286)



(…) those domains in which the second Cousin statement holds, but which are not

regularity domains, differ from regularity domains by parts of a lesser dimension. 63

What sums up Behnke and Stein’s review is the following table:

Cousin 1 Cousin 2 Poincaré Possible ?
1 + + + +
2 + + - -
3 + - + -
4 + - - +
5 - + + +
6 - + - -
7 - - + +
9 - - - +

(Behnke and Stein 1937: 192)

For instance: combination 1 is the case in polycylinders made up of discs; combination 2 is

impossible, since Cousin II implies “Poincaré” in any domain; Gronwall’s example shows

that 4 is the case for some domains.

Cousin I holds for more general domains than polycylinders: the (in)dispensable Weil

integral

The only direct result mentioned (but not proved) in Cartan’s 1934 short note to the Paris

Academy is:

Theorem 2.- If some domain D is convex relative to polynomials or rational

functions in x, y, the first Cousin theorem holds for D. 64

Cartan gives a small hint as to his proof method:

This result, which goes far beyond Cousin’s, is attained by a method analogous to

his; but André Weil’s integral (for functions of several variables) needs be used,

whereas Cousin only used the classical Cauchy integral (for functions of one variable).
65

                                                                                                                                                                                    
“Théorème 3.- Soit D un domaine pour lequel le premier théorème de Cousin est vrai (…). Si en outre D est
étoilé, ou encore si D est un domaine de Hartogs, le deuxième théorème de Cousin est vrai pour D.” (Cartan
1934: 1286)
63 “(…) die Nicht-regularitätsbereiche, in denen die zweite Aussage von Cousin gilt, nur um niederdimensionale
Stücke von Regularitätsbereiche unterscheiden.” (Behnke and Stein 1937: 187) 63
64 “Théorème 2.- Si un domaine D est convexe par rapport aux polynômes ou aux fonctions rationnelles en x, y,
le premier théorème de Cousin est vrai pour D.” (Cartan 1934: 1286)
65 “Ce résultat, qui dépasse de beaucoup celui de Cousin, s’obtient par une méthode analogue à la sienne; mais il
faut se servir de l’intégrale d’André Weil (pour les fonctions de plusieurs variables) tandis que Cousin utilisait
seulement l’intégrale classique de Cauchy (pour les fonctions d’une variable).” (Cartan 1934: 1286)



It was clear that Cousin’s proof depended essentially from the fact that his domain was a

polycylinder, in which all variables could be studied (somewhat) independently with methods

from the theory of functions of a single complex variable; in particular, the proof of the

“fundamental theorem” relied on the properties of a function defined by a parameterised line

integral along a cut in the plane of one of the variables. As a consequence, this proof-method

was ill-suited for non polycylindral domains. However, in 1932, André Weil had devised an

integral formula which generalised Cauchy’s integral formula for the representation of

holomorphic functions. This paper was written while Cartan and Thullen were writing their

1932 paper, and Weil wrote that it was his contribution to the study of R-convex domains in

which his friends had engaged. His theorem goes:

Let X1, X2,…, Xn be n polynomials in x, y, and let D be the domain (if it exists)

defined by the inequalities

(1) |Xi(x,y)| ≤ 1 (i = 1, 2, …, n).

Let σij (if it exists) be the two dimensional variety, lying on the boundary of D,

which is defined by the equalities and inequalities

|Xi(x,y)| = |Xj(x,y)| = 1, |Xk(x,y)| ≤ 1 (k ≠ i,j).

One can then determine polynomials Φij(ξ,η; x,y) in ξ, η, x, y, so that, for any f(x,y)

holomorphic in closed domain D,
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if (x,y) is interior to D;

= 0

if (x,y) is exterior to D. 66

However, Cartan did not publish the proof of his “théorème 2” based on Weil’s integral,

since it occurred to him that Weil’s reasoning could not be directly extended to the general

case of domains of holomorphy: there was no existence theorem for the generalised Φ

functions67. Weil would acknowledge this fact in his 1935 paper on L’intégrale de Cauchy et

                                                          
66 “Soient X1, X2,…, Xn n polynômes en x, y, et soit D le domaine (s’il existe) qui est défini par les inégalités (1)

|Xi(x,y)| ≤ 1 (i = 1, 2, …, n). Soit σij (si elle existe) la variété à deux dimensions, située sur la
frontière de D, qui est définie par les égalités et inégalités |Xi(x,y)| = |Xj(x,y)| = 1, |Xk(x,y)| ≤ 1 (k ≠
i,j). On peut alors déterminer des polynômes Φij(ξ,η;x,y) en ξ, η, x, y, de telle sorte que l’on ait, pour toute

fonction f(x,y) holomorphe dans le domaine fermé D,
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si (x,y) est intérieur à D; = 0 si (x,y) est extérieur à D.” (Weil 1932: 1304)
67 Weil’s paper was but a note the the Paris Academy, hence presented the results with a barely sketched proof.
In this paper, he stated his theorem in the case of domains defined by a finite number of polynomial inequalities,



les fonctions de plusieurs variables (Weil 1935)68. We will see that this need for an existence

theorem securing the generalised Weil integral formula would play an important part in

Cartan’s 1940 paper.

Back to Japan after a sabbatical leave which took him to Paris in 1929 to work on the

theory of complex function with Gaston Julia69, Kyoshi Oka managed to devise a proof of

what Cartan had called his “théorème 2”, first for rationally convex domains, in 1936 (Oka

1936), then for bounded domains of holomorphy in 1937 (Oka 1937). The general result relies

on the first: domains of holomorphy are approximated by analytically convex domains which

contain it (Oka refers to Cartan and Thullen’s 1932 paper (Oka 1984: 2)), and analytically

convex domains are approximated by rationally-convex domains (Oka 1984: 11). In order to

tackle the rationally convex case, Oka devised a trick which enabled him to avoid using the

yet loosely-founded Weil integral, and to resort to standard Cauchy formulae in each

component of a polycylinder. The trick goes as follows: replace domain ∆, defined by

conditions xi ∈ Xi and Rj(x1,…,xn) ∈ Yj (where the Rs denotes ν rational functions in n

variables, the Xi and Yj denote bounded domains), by a rational variety Σ defined in (n+ν)-

dimensional space by ν equations yj = Rj(x1,…,xn); the variety Σ is studied in polycylinder  (C)

defined by X1,…,Xn and Y1,…,Yν. In order to use this trick to study the existence problem for

meromorphic functions in ∆ with given poles, one first has to show that the data can be

transferred from the original setting to the new, polycylindral, one. To warrant this smooth

change of setting, Oka first solved (by induction on ν) the following problem: starting from a

holomorphic function f in ∆,

                                                                                                                                                                                    
but hinted at extensions to much more general cases (Weil 1932: 1305). In a 1973 overview of his mathematical
work, Cartan wrote : “ We now know that the additive problem can always be solved for a domain of
holomorphy, and, more generally, for a “Stein manifold”. This result was first proved by K. Oka. Before Oka, I
had seen that the additive problem can be solved by using André Weil’s integral, but at that time some
techniques were lacking which allow the application of Weil’ integral to the general case of domains of
holomorphy; I thus forwent publishing my proof.”; “On sait aujourd’hui que le problème additif est toujours

résoluble pour un domaine d’holomorphie, et plus généralement pour une “variété de Stein”. Ce résultat a été

prouvé pour la première fois par K. Oka. Avant Oka, j’avais vu que le problème additif pouvait se résoudre en

utilisant l’intégrale d’André Weil, mais comme à cette époque il manquait certaines techniques permettant

d’appliquer l’intégrale de Weil au cas général des domaines d’holomorphie, je renonçai à publier ma

démonstration.” (Cartan 1979: XI)
68 “ (…) I will make the following assumption, which I could not free myself from: I will assume that to every
function Xi(x,y), one can associate two functions Pi(x,y;x0,y0), Qi(x,y;x0,y0), holomorphic in x,y,x0,y0 when (x,y) ∈
D, (x0,y0) ∈ D, in such a way that : Xi(x,y)-Xi(x0,y0) = (x-x0) Pi + (y-y0) Qi holds identically.”; “(…) Je ferai
l’hypothèse suivante, dont je ne suis malheureusement pas arrivé à m’affranchir: Je supposerai qu’à chacune

des fonctions Xi(x,y) l’on puisse faire correspondre deux fonctions Pi(x,y;x0,y0), Qi(x,y;x0,y0) holomorphes en

x,y,x0,y0 quand (x,y) ∈ D, (x0,y0) ∈ D, de façon que l’on ait identiquement: Xi(x,y)-Xi(x0,y0) = (x-x0) Pi + (y-y0)

Qi.” (Weil 1935: 179)



(…) construct a holomorphic function defined on (C’) having the value f(M) for any

point M on the portion of Σ lying inside (C’), (C’) being a given domain in the interior

of (C). (Oka 1984: 2)

The successful change of setting allows for a direct extension of Cousin’s method: “ But

now, the classical methods being applicable almost literally, we shall content ourselves with

referring the reader to this.” (Oka 1984: 6).

Cousin II is purely topological (for domains of holomorphy)

After from Gronwall’s paper it had constantly been remarked that, contrary to Cousin I,

Cousin II had a topological side to it. Yet, this fact had not been explored in the 1917-1937

period, partly because mathematicians focused on non-topological properties of domains (R-

convex domains, star or circle domains etc.). To some extent, it could be argued that neither

Gronwall nor his successors had any real tools to tackle the topological side of the question,

and that Gronwall’s restriction to simply-connected polycylinders (save for maybe one

component) was the simplest way to set topological questions aside.

After his success with Cousin I, Oka published in 1938 a paper Sur les fonctions

analytiques de plusieurs variables – III Deuxième problème de Cousin (Oka 1938). This

paper plays an important part in our historical narrative, for at least two reasons. First, Oka

would establish that for Cousin II (in domains of holomorphy), topology does not play only

some part, but that the problem is of a purely topological nature. Second, his main proof

technique would rely on what we called the “U∩V, U, V, U∪V” site technique, after the 1917-

1937 period in which approximation techniques prevailed; this change of focus in terms of

site technique is a fundamental background element to Cartan’s 1940 structural paper, as we

shall see.

To study the role of the topological element in Cousin II, Oka defined its purely topological

analogue, which he called the “generalised Problem” (“problème généralisé” (Oka 1984:

27)): “We shall extend the second Cousin problem to the domain of non-analytic functions”

(Oka 1984: 25). Consider a domain D in a real space; two continuous functions f1 and f2 are

said to be equivalent on a subdomain D’, if throughout D’ we have f1 = λ f2, where λ is

                                                                                                                                                                                    
69 As a consequence, many of his early papers would be published in French (or, occasionally, Oka’s own brand
of French), though in Japanese journals. We will quote from the English translation of his Collected Papers (Oka
1984).



continuous and non-vanishing in D’; associate to every point of D an open ball on which a

continuous function f is given, so that equivalence holds in the overlaps:

Under these conditions we ask to find a continuous function F on D equivalent at

every point P of the domain to the function attached to P. We shall say that the

function F, if it exists, has the given zeros. (Oka 1984: 25).

In order for the topological problem to be the analogue of the analytical one, it is also

assumed that the zero-locus defined by the zeroes of the f functions is of empty interior: “we

abandon, once for all, all cases in which the given zeros fill out a whole portion of the space

of the variables” (Oka 1984: 26). The three main results of Oka’s paper are: first, in complex

polycylinders, the generalised problem is solvable (for any continuous data) if and only if all

components (except at most one) are simply connected. Second, in a domain of holomorphy,

if the generalised problem is solvable70 then so is the analytic problem. Third, an explicit

topological condition on the zero-locus is given for the problem to be solvable (Oka 1984: 33-

34).

The fact that the topological problem cannot always be solved in a polycylinder with more

than one non simply-connected component is proved by exhibiting an example, with a

complex function defined in the product of two ring-shaped domains. The proof of the

topological existence theorem – when at most one component is not simply-connected –

depends on a fundamental lemma: let (x1,x2,…,xn) be n complex variables,

On the plane x1, we draw a rectangle R which we decompose into equal small

rectangles (ωi) by two systems of straight lines parallel to the sides of R. Let A1 be a

closed domain consisting of one or more of the (ωi) and their boundaries, and A2 a

closed domain consisting of one of the (ωi), contiguous to A1, and its boundary. We

shall denote the common part of the boundaries of A1 and A2 by L, and the closed

domain consisting of A1 and A2 by A. Let us take a domain B in the space (x2,…,xn).

(Oka 1984: 27)

With its work in the plane of one of the first variables and its simplicial decomposition of a

compact subset, this is reminiscent of Cousin’s “fundamental theorem”. What follows,

however, is a patching-up argument with no analogue in Cousin: given two continuous

functions f1 and f2, defined over neighbourhoods of (A1,B) and (A2,B) (respectively), and

globally equivalent in a neighbourhood of L;

                                                          
70 That is : if for some analytic data, the continuous problem has a continuous solution.



Under these conditions, one can find a continuous function of the n variables xi,

defined in a neighbourhood of A, and equivalent to at least one of the two given

functions  f1, f2 at any point of A, if L does not coincide with the entire boundary of the

rectangle A2 and if B is simply connected. (Oka 1984: 27)

These topological conditions are necessary and sufficient for a non-vanishing λ = f1 / f2,

defined over a neighbourhood of L, to be continuously extended over A2 without vanishing; if

λ  denotes the extended function, f1 (defined over A1) and λ f2 (defined over A2) coincide over

a neighbourhood of L, hence a continuous function with the right zero-locus can be defined

over A = A1∪A2. Though purely topological in nature, the key step is still expressed by Oka in

terms of single-valuedness of logλ in the neighbourhood of L.

As to the analytic part, the existence results derive from Oka’s proof of Cousin I for

domains of holomorphy; he simply uses the traditional logarithmic transformation to pass

from a multiplicative problem to an additive problem. The fact that Cousin II is not solvable

for all zero-loci in general domains was clear as from Gronwall. Now Oka started

investigating the conditions on the zero-locus for Cousin II to be solvable in this particular

case. He proves that, in domains of holomorphy, the solvability of Cousin II depends only on

a topological property of the zero-locus: if D denotes a such domain, Cousin II is solvable for

a given zero-locus Σ if and only if this locus can be “swept out” (“balayable” (Oka 1984:

29)), that is (in modern parlance71), if there is a continuous zero-locus in D×[0,1] such that

D×{0} = Σ and D×{1} = ∅.

Cartan’s structural transition

The pivotal point in our narrative is Cartan’s pair of papers: Sur les matrices holomorphes

de n variables complexes in 1940 (Cartan 1940) and Idéaux de fonctions analytiques de n

variables complexes in 1944 (Cartan 1944). These are actually the two parts of a single work,

the delay being ascribable to the prevailing adverse circumstances. The first paper is devoted

to the proof of a patching-up theorem that is a direct generalisation of Cousin’s “fundamental

theorem”, which, as we have seen, was also an essential part of Gronwall and Oka’s

contributions. In 1940, Cartan clearly inserted his generalised theorem in a new research

programme, that would be laid out in detail in 1944:

                                                          
71 This is Cartan’s rephrasing, cf. (Oka 1984: 35)



It seems that our theorem can play an important part in the global study of ideals of

holomorphic functions. In this regard, it should be noted that the “second Cousin

problem” pertains to the global study of ideals which have, in the neighbourhood of

every point, a base made up of only one function. Apart from this particular case, it

seems to me that the global study of ideals has not been tackled. That we will do

systematically, in a forthcoming Memoir.72

An “ideal” generalisation of Cousin data and Oka lemma

The key to the generalisation of Cousin II lies in recasting it in terms of ideals:

(…) To construct a holomorphic function with given zeroes in a given domain. It is

of course necessary to clarify what “given zeroes” means. We shall call “Cousin

datum” in a domain D, the following datum: for each point x in D a function fx is

given, which is holomorphic at x; these functions must meet the following

requirement: each point a of D has a neighbourhood V where fa is holomorphic, and at

every point of which the quotient fx/fa is holomorphic and ≠ 0. The later condition

expresses the fact that, in the ring of holomorphic functions at x, fx and fa generate the

same ideal. Thus, Cousin’s problem is: for any Cousin datum in domain D, is there a

function f which is holomorphic in D, and such that for every point x of D, the quotient

f/fx is holomorphic and ≠ 0. 
73

At any point x, the formula fx = gxλ, with λ(x) ≠ 0, is now read in terms of ideals: in the ring

of analytic regular functions at x (the precise definition would be given in 1944), λ is an

invertible element, hence functions fx and gx generate the same principal ideal; exhibiting the

function fx gives only an extrinsic representation of an intrinsic objet, which is an ideal. But

ideals with more than one generator (at each point) can be considered just as well, Cartan

argued. If two sets of p functions at point x are given by f1,…,fp, and g1,…,gp, the fact that

                                                          
72 “Notre théorème semble susceptible de jouer un rôle important dans l’étude globale des idéaux de fonctions
holomorphes. Remarquons à ce propos que le “deuxième problème de Cousin” se rapporte à l’étude globale des
idéaux qui ont, au voisinage de chaque point, une base formée d’une seule fonction. En dehors de ce cas
particulier, on n’a pas encore abordé, me semble-t-il, l’étude globale des idéaux. C’est ce que nous ferons
systématiquement dans un Mémoire ultérieur.” (Cartan 1940: 2)
73 “(…) Construire une fonction holomorphe ayant des zéros donnés dans un domaine donné. Il faut, bien
entendu, préciser ce qu’on entend par « zéros donnés ». Nous appellerons donnée de Cousin dans un domaine D
la donnée, en chaque point x de D, d’une fonction fx holomorphe au point x, ces fonctions satisfaisant à la
condition suivante : tout point a de D possède un voisinage V dans lequel fa est holomorphe et en tout point x
duquel le quotient fx/fa est holomorphe et ≠ 0. Cette dernière condition exprime que, dans l’anneau des fonctions
holomorphes au point x, fx et fa engendrent le même idéal. Le problème posé par Cousin est alors : pour toute



they generate the same ideal at x can be expressed by the existence of a invertible square

matrix of holomorphic functions at x expressing the change of basis74. In the Cousin II case,

which is now seen as the principal ideal case, the fundamental step of Oka’s proof was the

extension of non-vanishing function λ (defined in the neighbourhood of L = A1∩A2) over A2,

so that the continuous function with the right zero locus could be extended from A1 to A1∪A2.

Cartan first reminded the reader of this “opération élémentaire”, in a more symmetrical

formulation:

(…) the principle of the  proof is the following: to pass from local data to a global

existence, parts are assembled in turn. Each assembling step consists in what we will

call an elementary operation. For instance, here is the elementary operation that leads

to Cousin’s theorem:

Let two compact polycylinders ∆’, ∆’’ be given, whose components in the planes of

the n-1 last complex variables are the same, and whose intersection ∆’∩∆’’ is simply

connected; let a function f(x) be given, holomorphic and ≠ 0 at all points of ∆’∩∆’’;

the point is to write function f as a quotient f’/f’’, where f’ is holomorphic and ≠ 0 at

every point of ∆’, and f’’ is holomorphic and ≠ 0 at every point of ∆’’. 75

The main theorem of the 1940 paper gives the analogous result for invertible matrices :

Theorem I.- In the space of n complex variables, let ∆’ and ∆’’ be two compact

polycylinders whose components are the same in the planes of all the variable but one,

and whose intersection ∆’∩∆’’= ∆ is simply connected. Every holomorphic and

invertible matrix on ∆ can be written, on ∆, as A = A’-1A’’, where A’ is a holomorphic

and invertible matrix on ∆’, and A’’ is a holomorphic and invertible matrix on ∆’’. 76

                                                                                                                                                                                    
donnée de Cousin dans le domaine D, existe-t-il une fonction f, holomorphe dans D, telle que, pour tout point x
de D, le quotient f/fx soit holomorphe et ≠ 0.” (Cartan 1944: 149)
74 Cartan uses « base » of an ideal or a module to denote any (finite) set of generators.
75 “(…) le principe de la démonstration est le suivant : pour passer de données locales à une existence globale, on
procède par assemblages successifs de morceaux. Chaque stade d’assemblage consiste en ce que nous
appellerons une opération élémentaire. Voici par exemple en quoi consiste l’opération élémentaire qui conduit au
théorème de Cousin : Etant donnés deux polycylindres compacts ∆’ et ∆’’ qui ont respectivement mêmes
composantes dans les plans des n-1 dernières variables complexes, et dont l’intersection ∆’∩∆’’ est simplement
connexe, étant donnée d’autre part une fonction f(x) holomorphe et ≠ 0 en tout point de ∆’∩∆’’, il s’agit de
mettre cette fonction f sous la forme d’un quotient f’/f’’, f’ étant holomorphe et ≠ 0 en tout point de ∆’, et f’’ étant
holomorphe et ≠ 0 en tout point de ∆’’.” (Cartan 1944: 152)
76 “Théorème I.- Soient, dans l’espace de n variables complexes, deux polycylindres compacts ∆’ et ∆’’ qui ont
mêmes composantes dans les plans de toutes les variables sauf une, et dont l’intersection ∆’∩∆’’= ∆ est
simplement connexe. Toute matrice holomorphe et inversible sur ∆ peut être mise, sur ∆, sous la forme A = A’-
1A’’, A’ étant une matrice holomorphe et inversible sur ∆’, et A’’ une matrice holomorphe et inversible sur ∆’’.”
(Cartan 1940: 9)



In 1944, Cartan would refer to theorem I as the “généralisation du Lemme de Cousin”; as

we saw, this direct generalisation of Oka’s proof for Cousin II is reminiscent of the form of

Cousin’s fundamental theorem but not of Cousin’s proof techniques.

What this theorem warrants is the patching-up of ideals rather than the extension of

functions:

Theorem II.- ∆’, ∆’’ and ∆ denoting the same as in theorem I, let us consider, on ∆’

and ∆’’ respectively, two ideals I’ and I’’ with finite bases. For I’ and I’’ to have a

common holomorphic basis on union ∆’∪∆’’, it is necessary and sufficient that I’ and

I’’ generate the same ideal on the intersection ∆. 77

It should be noted that even in the case of principal ideals, this type of theorems would not

necessarily lead to a solution to the classical Cousin II problem. In the classical problem, a

global function was aimed at, whereas Cartan’s new theorems can, at best, prove the existence

of a global function ideal (with, hopefully, a finite set of generators). Among other things, the

new setting thus affects the meaning of what is to be called a solution to Cousin II; the new

theory may strive for a solution only in a weak sense, but Cartan’s successful generalisation

of Cousin and Oka’s lemma shows that the ideal variant is more tractable. This distinction

between a classical Cousin II problem and an ideal Cousin II problem is not stressed in

Cartan’s 1940-44 problems, but it will be later (Cartan 1950b).

Mixed structure, inner concepts and problems

Some aspects are only hinted at in 1940 that would be tackled explicitly in 1944; for

instance, the following was only a footnote in 1940:

The ideal “generated” on set ∆ by an ideal I’ on ∆’ (when ∆ ⊂ ∆’) is made up of

finite linear combinations of functions of I’, with coefficients holomorphic on ∆. 78

Considering that the right objects to patch together are ideals (or, in 1944, modules) is one

thing, but in this case, the algebraic vocabulary fails to capture an essential feature. The new

structure is not just an algebraic structure (whose elements are functions); the objects are

rings, ideals or modules on domains or polycylinders. It is the interconnections between ideals

                                                          
77 “Théorème II.- ∆’, ∆’’ et ∆ ayant la même signification qu’au théorème I, considérons sur ∆’ et ∆’’
respectivement, deux idéaux I’ et I’’ de bases finies. Pour que I’ et I’’ admettent une même base holomorphe sur
la réunion ∆’∪∆’’, il faut et il suffit que I’ et I’’ engendrent le même idéal sur l’intersection ∆.” (Cartan 1940:
15)
78 “L’idéal « engendré » sur un ensemble ∆ par un idéal I’ sur ∆’ (lorsque ∆ ⊂ ∆’) se compose des combinaisons
linéaires finies de fonctions de I’ à coefficients holomorphes sur ∆.” (Cartan 1940: 15)



and domains that are to be explored; to characterise and investigate this situation, new

concepts are to be defined, and a wealth of new terms is to be coined. This laying out of the

basic notions for the theory of this new structure makes up the bulk of the 1944 paper. In a

very pedagogical style, Cartan first reminds his reader of the (purely algebraic) definition of

an ideal in a ring, then remarks:

But the aforegoing definition remains vague if one fails to specify in what regions

the functions are considered. The notion of an ideal will always be relative to a

determinate set E in the space of n complex dimension. By definition, an ideal on E

will be an ideal of the ring OE of holomorphic functions on E; I call a holomorphic

function on E any function defined and holomorphic in a neighbourhood of E (this

neighbourhood is not fixed beforehand, it is relative to the function); two functions are

regarded as identical if there is a neighbourhood of E on which they coincide. 79

An ideal is said to be “ponctuel”80 if E is just a point. As we can see, no fancy notion of

direct limit was used by Cartan in 1944.

It must be mentioned that Oka defined the same structure in a paper that was published in

1950 but written in 1948, without Oka knowing Cartan’s 1944 paper. Oka had read the 1940

paper, however, in which the research programme of “global theory of function ideals” was

stated very clearly, and the major notions hinted at. Oka’s definition is slightly more precise,

and uses what he calls the “arithmetic” notions of congruence: he writes ϕ ≡ 0 (mod fi) to

express the fact that ϕ belongs to the ideal generated by the fi. The new structure is that of

“holomorphic ideal with indeterminate domains” (“idéal holomorphe de domaines

indéterminés” (Oka 1984: 85):

Consider domains (δ) (connected or not) and holomorphic functions f(x) on (δ); we

consider a set (I) of pairs (f,δ). Instead of saying that (f,δ) ∈ (I), we shall sometimes

say that f ∈ (I) on δ. Suppose that this set has the following two properties:

1° If (f,δ) ∈ (I) and α(x) is a holomorphic function of the domain δ’ (connected or

not), then, we have, αf ∈ (I) on δ∩δ’ ;

2° If (f,δ) ∈ (I) and (f’, δ’) ∈ (I), then f + f’ ∈ (I) on  δ∩δ’.

                                                          
79 “Mais la définition précédente reste vague si l’on ne précise pas dans quelles régions sont envisagées les
fonctions. La notion d’idéal sera toujours relative à un ensemble E déterminé de l’espace à n dimensions
complexes. Un idéal sur E sera, par définition, un idéal de l’anneau OE des fonctions holomorphes sur E ;
j’appelle fonction holomorphe sur E toute fonction définie et holomorphe dans un voisinage de E (ce voisinage
n’étant pas fixé à l’avance mais dépendant de la fonction) ; deux fonctions sont considérées comme identiques
s’il existe un voisinage de E dans lequel elles coïncident.” (Cartan 1944: 153)
80 We will translate the French “ponctuel” by “punctual”, i.e. attached to a point. It sounds slightly odd in French
as well, but the meaning is unambiguous.



We shall call (I) a holomorphic ideal with indeterminate domains. (Oka 1984: 84)

In the 1944 paper, once the basic notion is laid out, Cartan presented the central problem

for the theory of this new structure:

Any holomorphic function on E can be regarded as a holomorphic function on any

set E’ included in  E. As a consequence, every ideal on E generates an ideal on E’,

when E’ ⊂ E; it is important not to confuse these two ideals: the second one is made

up of all finite linear combinations with coefficients holomorphic on E’, of functions

from the first ideal. Thus, one ideal potentially carries a multitude of ideals, one on

every subset of E. 81

More generally, to any module M defined over domain E, an infinity of punctual modules

Mx is associated, one at each point x of E. Now, things can also be done the other way around

: given a family of punctual ideals Mx on E, Cartan defined the “associated module” M to be

the module of functions defined on E “which belong to Mx at every point x of E” (“qui

appartiennent à Mx en tout point x de E” (Cartan 1944: 157)). The main problem is to

characterise associated modules, and to some extent, the 1944 formulation of the generalised

Cousin problem is: on a compact polycylinder, does any module coincide with its associated

module82 ? (Cartan 1944: 158). As Cartan pointed out very clearly, the difficulty lies in the

fact that the module associated to a subset of the domain is made not only of restrictions of

functions, but of linear combinations of those restrictions with a larger coefficient ring. To

show the relevance of this fact, he relied in 1944 on a case he had studied in 1940: consider a

family f1,…, fq with no common zero in E; at every point x of E, they generate the unit ideal

(i.e. the whole ring), since at least one of them does not vanish, hence is invertible at x.

However, it is not clear at all that the associated ideal over E is that defined by fl,…,fq; or, to

put it in terms of functions, it is not clear at all that there is a family c1,…,cq of holomorphic

functions on E, such that Σcifi = 1 identically on E (Cartan 1944: 158).

Tackling the question of associated modules requires that a new concept be introduced.

Again, Cartan made its origin clear by his rewording of Cousin II: as we saw earlier, he

stressed the fact that the generators fx of the principal punctual ideals were such that every

point a has a neighbourhood V and a generator fa, defined over V, such that fa also generates

                                                          
81 “Toute fonction holomorphe sur E peut être considérée comme une fonction holomorphe sur n’importe quel
ensemble E’ contenu dans E. Il en résulte que tout idéal sur E engendre un idéal sur E’, lorsque E’⊂ E ; il
importe de ne pas confondre ces deux idéaux : le second se compose de toutes les combinaisons linéaires finies,
à coefficients holomorphes sur E’, des fonctions du premier idéal. Ainsi, un idéal porte en puissance une foule
d’idéaux, un sur chaque sous-ensemble de E.” (Cartan 1944: 153)
82 Or rather, to be precise : does any module M on  coincide with the module associated to the system of punctual
modules Mx.



the ideal at every point x of V. This concrete property of “Cousin data” is turned into an

abstract property which particular instances of the new structure may or may not have:

Definition.- Let E be any set of the space of n complex dimensions, and q an integer

≥ 1, given once for all. Let us assume that to every point x of E a q-dimensional

module of holomorphic functions (at x) has been associated. We shall say that the

punctual modules Mx make up a coherent system if every point a of E has a

neighbourhood V on which there exists a q-dimensional module which generates the

punctual module Mx at every point of the intersection V∩E. 
83

Oka defined a similar notion in his 1950 paper, coining the term “local pseudo-basis”.

Cartan would describe the general role of this concept in 1950 in these terms: “ (…) before we

pass from local to global, we need to go into local properties in depth, that is, to see how

point-wise properties are locally organised ”84.

Both the concepts of a coherent system of punctual modules (there is no “sheaf” word yet !)

and that of module over E associated to such a system, are central concepts for the study of

the new structure. The second one expresses the globalisation problem and, as such, was

clearly there from the beginning: this is what the “global theory of ideals of holomorphic

functions” is about. As to the first one, it seems that it took some time to Cartan to grasp its

problematic nature fully, maybe due to the fact that it is not problematic in the Cousin case. In

1944, he had to confess that, in order to prove his main theorem (theorem IV, dealing with

modules over ∆ = ∆’∩∆’’, ∆’, ∆’’, and ∆’∪∆’’), he has had to assume something he has not

been able to prove:

(…) problem IV raises a preliminary question: the fk being holomorphic functions

on ∆, let us associate to every point x of ∆ the punctual module M(fk,x) made up of

systems of p functions ck (holomorphic at x) such that ∑ =
k

kk fc 0 ; do these punctual

modules form a coherent system ? Now that is a question which I haven’t yet managed

to settle. 85

                                                          
83 “Définition.- Soit E un ensemble quelconque de l’espace à n dimensions complexes, et soit q un entier ≥ 1
donné une fois pour toute. Supposons qu’à chaque point x de E ait été attaché un module Mx (à q dimensions) de
fonctions holomorphes au point x. Nous disons que les modules ponctuels Mx forment un système cohérent, si
tout point a de E possède un voisinage V sur lequel existe un module (à q dimensions) qui, en tout point x de
l’intersection V∩E, engendre le module ponctuel Mx.” (Cartan 1944: 156)
84 “(…) avant de pouvoir faire le passage du local au global, il faut approfondir les propriétés locales, c’est-à-dire
voir comment les propriétés ponctuelles s’organisent localement” (Cartan 1950a: 30).
85 “(…) le problème IV soulève une question préliminaire : les fk étant holomorphes sur ∆, associons à chaque
point x de ∆ le module ponctuel M(fk,x) formé des systèmes de p fonctions ck (holomorphes au point x) telles que



The question became all the more pressing when Cartan showed that whether or not this

module of relations coincides with its associated modules is of the essence for the whole

theory (Cartan  1944 1959). This problem of coherence for the sheaf of relations would be

solved by Oka in 1950. In the 1944 paper, Cartan also stated the problem of coherence for the

ideal of an analytic subvariety (Cartan 1944: 187), a problem which he would solve in his

1950 Idéaux et modules de fonctions analytiques de variables complexes (Cartan 1950a). The

very same year, Oka gave the example of a non-coherent “ideal” (Oka 1984: 86). In 1950,

Cartan admitted that in 1944 he had not noticed that the following fact needed to be proved: if

M is a module on E, the system of punctual modules Mx it generates is coherent (Cartan

1950a: 30).

Algebraic transition or structural transition ?

At first sight, one could argue that very few algebraic concepts are actually imported into

the new framework. There is not much beyond the definitions: ring (Cartan denotes by OE the

ring of holomorphic functions of E), ideal, module; in the case of modules, only submodules

of finites powers OE
q of the ring are concerned. For the module of relations, Cartan coined the

term “derived module” (“module dérivé” (Cartan 1944: 167)) and no notion of kernel appears.

In fact, no notion of homomorphism between modules is ever used or even alluded to.

Needless to say no idea of a quotient structure is present in 1944: the fact that Cousin data,

being defined “up to something” (additively in Cousin I, multiplicatively in Cousin II)

“clearly” indicates that they are quotients of more elementary structures, would not strike

Cartan until a few years later, as we shall see. In fact, the ideals and modules that Cartan

considers are not abstract ideals and modules, in so far as their elements are always complex

functions in the classical sense; the elements of a quotient would be of a different nature, a

nature that would not be considered seriously until 1952.

In terms of ring and module properties, Cartan did not go beyond finiteness properties

(specifically, the noetherian property);  no “fancy” notion such as that of a local ring is ever

used, despite the fact that this notion had been defined and studied by Krull: his 1938

Dimensionstheorie in Stellenringe was already a survey paper (Krull 1938). As far as

algebraic theorems are concerned, only two play a part in Cartan’s 1944 paper. In a footnote

                                                                                                                                                                                    

∑ =
k

kk fc 0  ; ces modules ponctuels forment-ils un système cohérent ? Or c’est là une question que je ne suis pas

encore parvenu à résoudre.” (Cartan 1944: 160)



(Cartan 1944: 166) Cartan made use of the decomposition of an ideal as intersection of

primary ideals, and refers the reader to the second edition of van der Waerden’s Moderne

Algebra. The other theorem plays a more visible part, since it is mentioned in the introduction

and a proof is given in an Appendix to the paper: “any punctual ideal has a base” (“un idéal

ponctuel possède toujours une base” (Cartan 1944: 153)), i.e. the ring of convergent power

series in several complex variables is noetherian. In this regard, Cartan refers his reader to

Rückert’s 1933 paper Zur Eliminationsproblem der Potenzreihenideale (Rückert 1933).

Not much algebra, maybe, but a recasting of enduring problems in a new and algebraically

flavoured setting. But if algebra does not actually play a major part, why bother ? It seems

that an answer was given earlier: the notion of “ideal” enabled Cartan to come up with a new

interpretation of what the second Cousin problem was about, and the class of  ideal problems

proves both larger and more tractable than the classical one. However, this shows how the

algebraic import proved seminal, but it gives no clue as to why Cartan turned to algebra in the

first place.

Part of the answer lies in the type of problems which Cartan set out to tackle, rather than in

any specific algebraic result or concept. These problems are exemplified in the introduction of

the 1944 paper:

As we mentioned earlier, Cousin’s results allow for the global study of complex

analytic varieties of n-1 dimensions in the space of n dimensions, as well as for the

global study of holomorphic functions on these varieties. But it seems no attempt was

ever made at a global study of complex analytic varieties in arbitrary dimensions. In

this work, we intend to partially fill this gap. Let us analyse the problem more closely:

we shall say that, in a domain D, a set E is a complex analytic variety (…) if every

point a of D has a neighbourhood in which set E can be defined as the set of zeroes

that are common to a finite number of holomorphic functions. Can such a variety be

defined globally as the set of zeroes that are common to a finite (or even infinite)

family of functions which are holomorphic in D ? (…) Here is another problem: given

an analytic variety E in D, and, at every point x of E, a function fx
 which is

holomorphic at that point, in such a way that every point a in E has a neighbourhood V

such that, for every x on the intersection V∩E, fx and fa are equal at every point of E

sufficiently near x; is there a function f, holomorphic in D, which coincides in the

neighbourhood of any point x of E with the function fx associated to that point ? 
86

                                                          
86 “Les résultats de Cousin, nous l’avons rappelé, permettent l’étude globale des variétés analytiques complexes
à n-1 dimensions de l’espace à n dimensions, ainsi que l’étude globale des fonctions holomorphes sur ces



The first problem is a generalisation of Cousin II for varieties of (complex) codimension

different from one. The case in which the function of a finite family (f1,…,fp) have no

common zeroes is now seen as a particular case of this generalised Cousin II problem ! Its

solution, namely that (in the right domains) there are functions c1,…,cp such that

Σcifi = 1       (formula α)

is all the more important in that a slightly modified version provides an existence theorem

that warrants the Weil integral formula (Cartan 1944: 186). As to the second problem that

Cartan mentioned in this passage, it is not a Cousin problem; but we came across it earlier,

namely in Oka’s proof of Cousin I: to implement his trick (replace a rational domain by a

rational subvariety in a polycylinder), Oka had to tackle thz question of prolongation to a

polycylinder of holomorphic functions that are defined on a subvariety;  Cartan wrote:

Besides, this is the very goal which led me, a few years ago, to undertake in a

systematic fashion the global study of ideals of holomorphic functions. 87

Here, the link with algebra is one of analogy: in “modern algebra”, the theory of

polynomial ideals deals with these very questions, but with polynomials instead of analytic

functions. In particular, this theory is the new setting for classical results of elimination

theory, such as Hilbert’s Nullstellensatz; quoting from van der Waerden’s Moderne Algebra

If f is a polynomial in K[x1,…,xn] which vanishes at all common zeroes of

polynomials f1,..,fr, then the following congruence holds

f 
ρ
 ≡ 0 (f1,…,fr)

for some natural number ρ (and conversely). 88

In particular, when the polynomials have no common zeroes, the classical algebraic

analogue of formula α goes:

                                                                                                                                                                                    
variétés. Mais rien ne semble avoir été tenté pour l’étude globale des variétés analytiques complexes à un

nombre quelconque de dimensions. Nous nous proposons, dans ce travail, de combler partiellement cette lacune.
Analysons de plus près le problème: nous dirons que, dans un domaine D, une ensemble E est une variété
analytique complexe (…) si chaque point a de D possède un voisinage dans lequel l’ensemble E peut être défini
comme l’ensemble des zéros communs à un nombre fini de fonctions holomorphes. Une telle variété peut-elle
être définie globalement comme l’ensemble des zéros communs à un nombre fini, ou même infini, de fonctions
holomorphes dans D ? (…) Voici un autre problème : étant donnée une variété analytique E dans D, et, en
chaque point x de E, une fonction fx holomorphe en ce point, de manière que tout point a de E possède un
voisinage V tel que, pour tout point x de l’intersection V∩E, fx et fa soient égales en tout point de E suffisamment
voisin de x, existe-t-il une fonction f holomorphe dans D et qui, au voisinage de tout point x de E, coïncide sur E
avec la fonction fx relative à ce point ?” (Cartan 1944 152)
87 “C’est d’ailleurs dans ce but que j’ai été amené, il y a quelques années, à entreprendre systématiquement
l’étude globale des idéaux de fonctions holomorphes (…).” (Cartan 1944: 152) 87
88 “Ist f ein Polynom in K[x1,…,xn], das in allen gemeinsamen Nullstellen der Polynome f1,..,fr verschwindet, so

gilt eine Kongruenz f ρ ≡ 0 (f1,…,fr) für eine natürliche Zahl ρ (und umgekehrt).” (Waerden 1931: 11)



If the polynomials f1,…,fr of K[x1,…,x2] have no common zeroes in any algebraic

field over K, then the following relation holds in K[x1,…,xn]

1 = A1f1+…+Arfr.  
89

Some more specific questions which Cartan tackled as from 1940 are also direct analogues

of standard questions in the theory of polynomial ideals (in its Eliminationstheorie part): the

actual transformation of a given basis into another one (Cartan 1940: 18 and fol.), the

representation of subvarieties of codimension q by exactly q equations (Cartan 1944: §8).

There is no textual indication that Cartan also considered that there was some kind of

analogy between changes of base rings in his theory (where they result from changes of

domains) and changes of base fields in algebra. What is clear, is that Cartan saw that several

problems (or tricks, or proof methods, or loosely-founded formulae) in the theory of several

complex variables called for a general theory of analytic submanifolds, and that a significant

change of setting had occurred a few years earlier in the theory of algebraic manifolds.

Cartan’s introduction of the language of ideal theory in complex function theory echoes the

opening claim of van der Waerden’s 1927 Zur Nullstellentheorie der Polynomideale:

The exact foundation of the theory of algebraic manifold in n-dimensional space can

only be reached with the help of the theory of ideals, for even the definition of an

algebraic manifold leads directly to a polynomial ideal. 90

Van der Waerden saw his work as an import, into algebraic geometry, of the abstract

methods that Emmy Noether had developed91. A similar import and a similar claim is to be

found in Rückert’s theory of rings of convergent power series (with complex coefficient):

In the elimination theory for convergent power series of several complex variables,

the common zeroes of a system a functions vanishing at point zero is investigated. The

main result of the theory is the following theorem of Weierstrass [the preparation

theorem] (…). Up to now, all proofs of this fundamental result rely mainly on tools

from function theory. (…) In this work, we will show that a proper treatment of the

elimination problem (up to formulae (2) and (3)) requires but formal methods, hence

                                                          
89 “Wenn die Polynome f1,…,fr aus K[x1,…,xn] in keinem algebraischen Körper über K eine gemeinsame
Nullstelle haben, so gilt in K[x1,…,xn] eine Relation 1 = A1f1+…+Arfr.” (Waerden 1931: 10)
90 “Die exacte Begründung der Theorie des algebraischen Mannigfaltigkeiten in n-dimensionalen Räumen kann
nur mit Hilfsmitteln der Idealtheorie geschehen, weil schon die Definition einer algebraischen Manigfaltigkeit
unmittelbar auf Polynomideale führt.” (Waerden 1927: 183)
91 “ The only way to reach the greater ease and (at the same time) greater generality which the theory we are
presenting – a theory which was first vividly expounded by E. Noether (Math. Ann. 99) – enjoys when compared
to older theories, is to arithmeticise completely all concepts and all operations.”; “Die gröβere Einfachheit und
zugleich gröβere Allgemeineheit der vorliegenden, stark an E. Noether (Math. Ann. 99, s.o.) anlehnenden

Theorie gegenüber den älteren Theorien konnte nur erreicht werden durch äuβereste Arithmetisierung aller
Begriffe und Operationen.” (Waerden 1927: 185).



no function-theoretic tool. The general theory of ideals and the general theory of fields

prove to be such methods. 92

The analogy of problems does not entail one of methods: Cartan’s methods are purely

“funktionentheoretisch”, however, and his change of setting looks nothing like van der

Waerden’s idealtheoretisch foundation of (affine) algebraic geometry, or Rückert’s work on

local analytic geometry. It can also be even be argued that Cartan had always considered

possible parallel developments in algebra and in complex analysis, and that he had already

imported questions from the theory of polynomials to complex analysis before he was even

aware of ideal-theoretic formulations. For instance, in his 1931 paper Sur les variétés définies

par une relation entière (Cartan 1931), he sketched the following research programme: to

study analytic manifolds defined by one regular equation in two variables “par analogie avec

les courbes algébriques” (Cartan 1931: 25). In particular, in the first paragraph of this paper,

he relied on the two Cousin theorems (in the product of two planes or two discs) to study

whether or not, given two “entire” functions F,G with no common zeroes, some UF+VG ≡ 1

relation could be proved93. The analogy, again, was one of questions rather than methods, and

the end of Cartan’s introduction stressed this point:

(…) can a theory of entire curves be fruitful ? Will it be possible to approach it in

some other way, more algebraic (so to speak) than transcendental (as in this work) ?

Will this theory, on the contrary, deal with but general points; the latter, however

interesting they may be, are more often than not of no help when it comes to solving a

specific problem. 94

The outlook would be brighter in 1940, and the research programme much wider (only

plane curves had been considered in 1931). But the new theory would still be based on

transcendental methods, and Cartan’s “global theory of ideal of holomorphic functions”

would be nothing like the purely algebraic Dedekind-Weber theory of algebraic curves.

                                                          
92 “In der Eliminationstheorie der konvergenten Potenzreihen mehrerer komplexen Veränderlichen werden die
gemeinsamen Nullstellen eines Systems im Nullpunkt verschindender Potenzreihen (…) untersucht. Das
Hauptergebnis der Theorie ist das folgende Theorem von Weierstrass (Weierstrass’ preparation theorem) (…).
Die bisherige Beweise dieses grundlegenden Ergebnisse stützen sich vorwiegend auf Hilfsmittel aus der
Funktionentheorie. (…) In dieser Arbeit wird gezeigt, dass eine sachgemässe Behandlung des
Eliminationsproblems bis zu der algebraischen Darstellungen (2) und (3) der Gebilde nur formale Methoden,
also keine funktionentheoretischen Hilfsmittel benötigt. Als solche Methode erweisen sich die allgemeine
Idealtheorie und die allgemeine Körpertheorie.” (Rückert 1933: 259-260)
93 In this case, symbol ≡ denotes the fact that the equality holds at every point of the domain, not congruence !
94 “(…) une théorie des courbes entières peut-elle être féconde ? Pourra-t-on l’aborder par une autre voie en
quelque sorte algébrique, et non transcendante comme dans ce travail ? Restera-t-elle au contraire dans des
généralités qui, pour intéressantes qu’elles soient, ne sont souvent d’aucun secours lorsqu’il s’agit de résoudre en
particulier un problème précis ?” (Cartan 1931: 25)



It may be that Cartan’s new theory imported from modern algebra little more than

definitions; also, that Cartan had always been aware of strong analogies between standard

questions in the theory of polynomials and important questions in complex analysis. It does

not mean, however, that nothing significant changed in 1940, or that the model of modern

algebra played but a cosmetic part. The 1940-1944 theory is not algebraic (not even “en

quelque sorte algébrique”), but it displays a structural practice for which modern algebra –

among others – provided a model; a practice resulting in papers which look nothing like what

Cartan had written prior to 1940.

Let us give an overview some of the elements that make up this practice, while paying

special heed to the use of problems. First, the use of Cousin problems changes. In the 1930s,

we identified two different uses: a direct use, in which Cousin I, Cousin II and “Poincaré”

were proved to hold for ever more general domains; an indirect use, in which “Cousin” and

“Poincaré” were treated as properties whose interactions with other relevant properties

contributed to the charting the fast-growing world of domain-types being investigated in the

theory of functions of several complex variables. None of these uses lies at the heart of

Cartan’s 1940-1944 papers, although direct results may appear among the outcomes. Rather,

the Cousin problems have their specific content hollowed out so that a general form may

appear. Two general forms actually: first, the notion of “Cousin data” – which appeared in

Poincaré and Cousin’s ekthesis – would serve as a model to define the notion of coherent

ideal of holomorphic functions, a new and abstract structure; second, the Cousin problems are

samples
95 of the problem form “passer de données locales à une existence globale” (Cartan

1944: 152). The other problems that Cartan’s research programme covers are not

“generalised” Cousin problems, at least not direct generalisations; yet they are problems

which share this form.

A second aspect of this structural practice lies in the interlacing of several types of problem;

to be precise, what we are discussing here is problem functions rather than problem types.

There are problems which exhibit the general Cousin form, which Cartan describes as those

for which he engaged in the study of ideals of holomorphic functions: representation of zero-

loci in any codimension as loci of zeroes for finite families of globally defined functions;

prolongation of holomorphic functions defined over such a locus to globally defined functions

(on a polycylinder, for instance). We shall call these problems target problems, as opposed to

template problems such as Cousin II. In the 1944 paper, these target problems are those that

                                                          
95 The word “sample” is here used in the (somewhat) technical meaning it has in Goodman’s Languages of Art :
an object is exhibited as a sample of a property is it both has and denotes this property (Goodman 1976: 53).



are stated in the introduction, and for which some important results are proved at the very end

of the paper. A significantly longer list of target problems would be presented in 1950, in

Cartan’s Problèmes globaux en théorie des fonctions analytiques de plusieurs variables

complexes (Cartan 1950b). The bulk of the 1944 paper, however, is devoted to the careful

stating and interconnecting of a web of inner problem, which appear when the new abstract

structure starts to be investigated as such. The main problems of this type, as we saw earlier,

are problems of coherence for various types of modules on the one hand; and, on the other

hand, problems of “associated modules”: what can you say about a module defined over a

given domain from the modules it generates over sub-domains, be they points, open

subdomains or compact polycylinders. The emergence of these inner problems constitutes an

element that is specific to the structural transition: nothing of the kind had been encountered

in the long-term history of the Cousin problems. They go hand in hand with the definition of a

new and abstract structure; also with the coining of a wealth of new terms. The latter element

of practice is very well documented by the 1944 paper, which ends with an index of 26 terms,

most of which were coined by Cartan: donnée de Cousin, idéal de fonctions holomorphes,

idéal ponctuel, système cohérent d’idéaux (ou de modules) ponctuels, module associé à un

module, module parfait, module pur, module dérivable, module faiblement dérivable …

(Cartan 1944: 197).

The Cousin problems in the setting of sheaf theory

The years from 1945 to 1953 can be divided in two clearly distinct periods, as far as the

interactions between Cousin-like problems and the development of sheaf theory are

concerned. Year 1951 can serve as dividing line, as two important texts indicate: the 1950-51

volume of talks given at the Cartan topology seminar at the Ecole Normal Supérieure, in

which an initial standard form is given to sheaf theory; then Cartan’s 1950 Idéaux et modules

de fonctions analytiques de variables complexes (Cartan 1950a), which we mentioned earlier.

In the first document, many elements that had emerged in the 1945-1951 period are combined

into a new major cohomology theory in topology; in the second text, several important

questions left pending in the 1944 paper are answered. But in 1951, the two contexts were still

clearly distinct; in 1951, topological sheaf cohomology played no part in the furthering of the

“théorie globale des idéaux de fonctions holomorphes”. The two contexts merged in 1952,

and this resulted in a second complete change of setting for the Cousin problems.



In this part we shall change the form of our narrative, for at least three reasons. The first

and obvious one is that we temporarily have to do without the guiding thread of the Cousin

problems, since we claim the emergence of sheaf cohomology in the 1945-1950 period is

independent of them. The second reason is that we feel the standard focus on Leray’s work

leaves out of the picture a great wealth of elements that played a significant part in the

formulation of the 1950 sheaf cohomology theory: it may be that important ideas (and the

term “faisceau”) came from Leray, and that Cartan’s rewriting, simplifying and generalising

of Leray’s concepts provided the core elements of the new theory; but core elements are not

always all there is to it, and the 1945-1950 period is one of intense exchanges of ideas,

particularly among Bourbaki members. The 1950 sheaf concept emerged from a period of the

design of structures in which concepts, techniques, formulations, theorems, tool-boxes and

mottoes quickly passed from one field to another. Hence we opted for a non-linear narrative,

in which a variety of elements will be commented upon, all of which played more or less

direct parts in the emergence of sheaf cohomology; a bundle of ideas, so to speak. The third

reason for our change of pace lies in the fact that for many of the points we will be touching

upon, historical work is already available, be it on the general history of algebraic topology,

on the development of cohomological methods in topology and group theory, on the first

notions of category theory, or on the Bourbaki group; as far as Bourbaki is concerned, it

should be stressed that the emphasis is usually laid on Bourbaki as collective author of the

Elements de mathématiques rather than on Bourbaki as a connected group of researchers.

“Modern methods” in topology

In 1945, Cartan published a paper which marked the beginning of the topological phase of

his work. The very title is interesting: Méthodes modernes en topologie algébrique (Cartan

1945): modern methods, not recent developments. This short paper presents no new results,

but spells out in a clear and pedagogical style some notions and techniques which, for Cartan,

show how topology should be done. The notions and techniques would soon be part and

parcel of the topology toolbox on the base of which sheaf cohomology would be designed.

First, there are new methods for the definition of homology (or, rather, cohomology)

groups96. The first part of Cartan’s 1945 paper directly echoes Steenrod’s 1936 paper

                                                          
96 The clear distinction between homology and cohomology emerged in the 1940s, and Cartan relied on 1930s
papers in which everything is called homology. When directly commenting on such a paper, we will stick to the
author’s vocabulary.



Universal homology groups (Steenrod 1936), which, in turn, relied on Čech’s 1933 Théorie

générale de l’homologie dans un espace quelconque (Čech 1933). Steenrod made it clear that,

in order to obtain all possible homological invariants for topological spaces, it was not

necessary to consider all possible groups as coefficient groups. If the space can be described

as a complex, the additive group of integers is universal, meaning all homological information

can be derived from it; Steenrod shows that for locally compact topological spaces, the

multiplicative group T of complex numbers of modulo 1 is universal. For these general

topological spaces, Steenrod used the (co)homology groups introduced by Čech. Starting

from Alexandrov’s notion of nerve of an open covering as bridge-building device between

general topology and combinatorial topology, Čech defined homology and relative homology

groups for compact topological spaces by considering cycles that remain stable through

chains of projections associated to covering refinements. Steenrod made it slightly more

formal by introducing “mapping systems and homomorphism systems” (Steenrod 1936: 662).

In 1945, Cartan expounded Steenrod’s 1936 theory for the homology of compact spaces, and

used the following trick for locally compact spaces: the homology groups Γr(E) of space E are

defined as relative homology groups, the main space being the Alexandrov compactification

of E and the subspace being the point at infinity. What struk Cartan as specially “modern” in

these methods is the fact that they deal directly with topological spaces and open coverings,

and don’t rely on cellular decompositions and combinatorial structures; he stressed this

feature on several occasions, for instance: “it should be noted that our proof (…) never relies

on any considerations of triangulation or paving”97.

Another modern feature is that all results derive from the one and only core theorem

(“théorème fondamental”), which deals with a long exact sequence of groups. Namely, if E is

a locally compact space, F a closed subspace, and U = E-F,

Thus we have a cascade of so-called canonical representations, from each group in

the sequence

… Γr(F),   Γr(E),   Γr(U),   Γr-1(F),   Γr-1(E),   Γr-1(U), …

to the next; and these representations have the following fundamental property:

Theorem 5.1 (fundamental theorem). If Γ1, Γ2, Γ3 denote any three consecutive

groups in the latter sequence, ϕ denoting the canonical representation from Γ1 to Γ2,

and ψ the canonical representation from Γ2 to Γ3, the composite represenation ψoϕ is

                                                          
97 “on remarquera que notre démonstration (…) ne fait à aucun moment intervenir de considérations de
triangulation ou de pavage” (Cartan 1945: 13)



null. Moreover, when the base group g is T, the subgroup of Γ2 made up of the

elements whose image by ψ is null is exactly the image ϕ(Γ1). 
98

It is clear that our use of the term “exact sequence” was anachronistic; Cartan’s formulation

is exactly the same as that of Steenrod and Hurewicz (Hurewicz and Steenrod 1941) or

Ehresmann and Feldbau (Ehresmann and Feldbau 1941), when dealing with the long exact

sequence of homotopy groups for fibre-bundles. The goal of Cartan’s paper is to show how a

great wealth of topological results can be established in a uniform and straightforward way by

applying this one fundamental theorem to different situations.

After a proof of the theorem of invariance of domain, Cartan gives another example which

may strike a bell for us. He shows how the orientation problem for connected topological

manifolds of dimension n is to be laid out and tackled. As to the laying out:

An n-dimensional open ball Bn is an n-dimensional manifold. By definition, to

orient Bn is to pick one of the two isomorphisms from the group 
n

ΤΓ (Bn) to the base

group T. An orientation on Bn induces an orientation on every open subset U of Bn

which is homeomorphic to Bn (…). By definition, to orient an n-dimensional manifold

E is to orient all subsets of E which are homeomorphic to Bn, so that if U and V are to

such subsets, with U ⊂ V, the orientation of U is induced by that of V. 99

After setting out the concepts of open covering and induced orientation on subdomains,

Cartan used the fundamental theorem to study the patching-up of structures along the “U∩V,

U, V, U∪V” scheme:

Theorem 8.2. Let E be a locally compact, union of two open subsets U1, and U2,

with intersection V. The subgroup Γr(E) made up of the elements whose traces in

                                                          
98 “On a ainsi une cascade de représentations, dites canoniques, de chacun des groupes de la suite … Γr(F),
Γr(E),   Γr(U),   Γr-1(F),   Γr-1(E),   Γr-1(U), … dans le suivant ; et ces représentations jouissent de la propriété
fondamentale suivante: Théorème 5.1 (Théorème fondamental). Γ1, Γ2, Γ3 désignant trois groupes consécutifs
quelconques de la suite précédente, ϕ désignant la représentation canonique de Γ1 dans Γ2, et ψ la représentation
canonique de Γ2 dans Γ3, la représentation composée ψoϕ est nulle. En outre, lorsque le groupe de base g est T,
le sous-groupe de Γ2 formé des éléments dont l’image par ψ est nulle, est précisément l’image ϕ(Γ1).” (Cartan
1945: 6)
99 “Une boule ouverte Bn de dimension n est une variété de dimension n. Par définition, orienter Bn, c’est choisir

l’un des deux isomorphismes du groupe 
n

ΤΓ (Bn) sur le groupe de base T. Une orientation de Bn induit une

orientation pour tout sous-ensemble ouvert U de Bn homéomorphe à Bn (…). Par définition, orienter une variété
E de dimension n, c’est orienter chacun des sous-ensembles de E homéomorphe à Bn, de manière que si U et V
sont deux tels sous-ensembles satisfaisant à U ⊂ V, l’orientation de U soit induite par celle de V.” (Cartan 1945:
9)



Γr(U1) and Γ
r(U2) are null is isomorphic to the quotient of Γ

r+1(V) by the subgroup

generated by the traces (in Γr+1(V)) of elements of Γr+1(U1) and Γ
r+1(U2). 

100

The final result is, of course, that Γn is isomorphic to Z is E is orientable, to Z/2Z if it is

not. Again, this result is by no means a breakthrough in topology; the purpose was to show

that the question of orientation can be laid out in terms of open coverings, and tackled

algebraically with a long exact sequence of groups. Although this laying out clearly echoes

what Cartan did in the theory of complex functions, no connection would explicitly be made

until 1951/52.

The role of Leray is rather well known, and we refer the reader to (Houzel 1990) and

(Houzel 1998) for detailed analyses on the cohomological aspects. We will concentrate on a

few elements which would play a direct part in Cartan’s 1950 creation of sheaf cohomology,

thus paying little attention to Leray’s striking results or to the evolution of his ideas in the

1945-1950 period.

To sum things up, Leray developed his notion of “faisceau” in order to get a long exact

cohomology sequence associated to a continuous map between topological spaces π: E → E’,

at least when the map is a fibration. He drew on two tools developed by Steenrod in the early

1940s, namely the long exact homotopy sequence associated to a fibre bundle (Hurewicz and

Steenrod 1941), and the notion of cohomology with local coefficients (Steenrod 1943). The

latter had been introduced in Steenrod’s 1942 Topological Methods for the Construction of

Tensor Functions (Steenrod 1942), in which Steenrod defined the general notion of a tensor

bundle101, then studied the existence problem for continuous sections in terms of characteristic

classes (as Stiefel (Stiefel 1935) and Whitney (Whitney 1935) had done before102). The

problem is that, to define these characteristic classes associated to a fibre bundle, the standard

(co)homology theories would not usually do. The reason is the following: the chains are

defined as formal combinations of simplices with coefficients in the homotopy groups of the

fibres. On a simplex, the bundle is trivial so a generic fibre can be used, but there is no natural

way to identify the fibres throughout the whole base manifold, thus the coefficients that

appear in the cycle sums belong to different groups; these groups are isomorphic, since all

                                                          
100 “Théorème 8.2. Soit E localement compact, réunion de deux sous-ensembles ouverts U1 et U2, d’intersection
V. Le sous-groupe Γr(E) formé des éléments dont la trace dans Γr(U1) et la trace dans Γ

r(U2) sont nulles, est
isomorphe au quotient de Γr+1(V) par le sous-groupe engendré par les traces (dans Γr+1(V)) des éléments de
Γr+1(U1) et de Γ

r+1(U2).” (Cartan 1945: 10)
101 As well as that of subbundle of a vector fibre-bundle, as in the case of unit-sphere bundles on a riemannian
manifold.
102 De Rham had also done it in his dissertation, but in a particular case.



fibres are homeomorphic, but not naturally isomorphic, so this homology theory does not boil

down to the standard one, in which there is only one group of coefficients (Steenrod 1942:

122). Fortunately, there is a natural group morphism between the group associated to a

simplex and those associated to its edges, which is enough to define a boundary operator

between chain groups. One year later, Steenrod would present a more general theory of this

type of cohomology theories, in his paper on Homology with local coefficients (Steenrod

1943). The starting point is a direct generalisation of the 1942 particular case:

We shall say that we have a system of local groups (rings) in the space R if (1) for each

point x, there is given a group (ring) Gx, (2) for each class of paths αxy , there is a given

group (ring) isomorphism Gx → Gy (denoted by αxy), and (3) the result of the isomorphism

αxy followed by βxy is the isomorphism corresponding to the path αxyβxy. (Steenrod 1943:

611)

Leray’s 1946 notion of “faisceau” relies on Steenrod’s ideas from 1942 and 1943, although

homotopy classes of paths play no part in his version of homology with local coefficients.

Modules (or rings) are attached not only to points, but to any closed subset as well:

A sheaf of modules (or rings) on a topological space will be defined by the

following data: 1° to each closed subset F of points of E, a module (or ring) BF is

associated, which is null when F is empty; 2° to each couple of closed subsets of

points of E, say f and F, such that f ⊂ F, a homomorphism from BF to Bf is associated,

which transforms an element bF of BF in its intersection bF.f with f; if f’ ⊂ f ⊂ F and if

bF ∈ BF, we must have (bF.f).f’ = bF.f’. 
103

A “faisceau” is called normal if, to put it anachronistically, the module associated to a

given closed set is the direct limit of those associated to its closed neighbourhoods. Chains are

defined à la Steenrod, and a border operator can be derived from the “intersection”

morphisms. The aim is to define (co)homological invariants for a map π: E → E’ and not only

for spaces E and E’. For any integer p, a “p-ième faisceau d’homologie”  can be defined on

E’, by associating to every closed subset F’ the (standard) p-th homology group of π -1(F’)

(Leray 1946: 1366). The q-th homology of E’ groups with coefficients in that p-th faisceau

make up the (p,q)-th cohomology group of map π. Needless to say this is also the starting

point of the theory of spectral sequences.

                                                          
103 “Un faisceau de modules (ou d’anneaux) sera défini sur un espace topologique E par les données que voici :
1° à chaque ensemble fermé F de points de E est associé un module (ou un anneau) BF, qui est nul quand F est
vide ; 2° à chaque couple d’ensembles fermés, f et F, de points de E, tels que f ⊂ F, est associé un



A slightly altered theory appeared in print in the proceedings of a 1947 conference on

algebraic topology (Leray 1949)104. It includes a new element that would also play a key role

for Cartan, namely fine resolutions105. To define more general sheaf cohomologies than those

he associated to continuous maps, Leray starts from the same notion of faisceau, usually of

complexes of modules. After the definition of the “support” S of a complex automorphism,

the notion of fine complex is introduced:

We shall say that K is fine when, given a finite open covering of X, U
α

αV = X (…),

maps λx from K to itself can be found, such that

λα(k-k’) = λαk - λαk’ ;  ∑
α

αλ k = k ;  S(λα) ⊂ Vα.      
106

Sheaves of module complexes with a differential (i.e. square-null) operator are called

differential modules, and the ring cohomology is defined from the tensor product O with a

“couverture fine”:

Definition.- Given a locally compact space X, and B a differential sheaf on X, we

shall call the homology ring of X relative to B (denoted by H(XOB)), the ring which is

defined up to isomorphism by H(XOB), where X denotes a fine covering of X. 107

The tool and the theme: beyond topology.

There is no denying that the new cohomological techniques in topology – Čech

cohomology, long exact sequences, local coefficients – play a major part in the making of

Cartan’s 1950 sheaf concept: they provide the basic tools and the theoretical context. Yet it

can be shown that fields other than topology, and techniques other than cohomology also play

a part. Other specific tools and specific ways of laying out and tackling problems circulated in

the Bourbaki milieu and across disciplinary boundaries. We should like to briefly present the

                                                                                                                                                                                    
homomorphisme de BF dans Bf, qui transforme un élément bF de BF en son intersection bF.f par f ; si f’ ⊂ f ⊂ F et
si bF ∈ BF, on doit avoir (bF.f).f’ = bF.f’.” (Leray 1946: 1366)
104 As Leray make it clear in the introduction, the 1949 paper differs significantly from the 1947 talk, due to
work with Cartan between 1947 and 1949.
105 The term  “ resolutions ” is anachronistic.
106 “Nous dirons que K est fin quand, étant donné un recouvrement fini, ouvert de X, U

α
αV
= X (…) on peut

trouver des applications λx de K en lui-même, telles que    λα(k-k’) = λαk - λαk’ ;  ∑
α

αλ k = k ;  S(λα) ⊂ Vα.”     

(Leray 1949: 73)
107 “Définition.- Etant donné un espace localement compact X et un faisceau différentiel B sur X, nous
nommerons anneau d’homologie de X relatif à B et nous noterons H(XOB) l’anneau, défini à une isomorphie
près, par H(XOB) où X désigne une couverture fine de X.” (Leray 1949: 77)



case of one of these tools – namely partitions of unity – and the way it helped shape the laying

out of problems in very different fields, with a particular emphasis on functional analysis.

To the best of our knowledge108, the first paper devoted to the introduction of smooth

partitions of unity as a new tool in differential geometry is Bochner’s 1937 Remark on a

theorem of Green (Bochner 1937).  The goal of this very short paper is not to prove any new

results. Rather, Bochner criticises the standard proof of a well-known theorem – a particular

case of our Stokes formula (the Green formula) – and presents a more elegant proof based on

a new trick. The standard proof, Bochner writes, “requires a cellular subdivision of R into

sufficiently small subregions whose boundary is sufficiently smooth, an application of the

local theorem to each subregion, and finally a justification of the mutual cancellation of the

boundary terms arising from the artificial cellular partition” (Bochner 1937: 334). The

introduction of an auxiliary family of function (the supports of which are compatible with a

well-behaved open covering) helps devise a less awkward proof. Bochner did not coin a name

for this auxiliary set of functions, and actually, a similar trick was used by Whitney in his

1936 paper on Differentiable Manifolds (Whitney 1936: 67).

It seems that Bourbaki members were not aware of Bochner’s handy (and smooth)

functions; they had their own brand, however. Topological partitions of unity had been

introduced in a very different context by Dieudonné, in a 1937 note Sur les fonctions

numériques continues définies dans un produit de deux espaces compacts (Dieudonné 1937).

As in Bochner’s case – and to some extent, as in the case of Cartan’s paper on new methods

in algebraic topology – the goal was to give a better (more straightforward, more elegant)

proof of a well-known theorem. When presenting the theory of integration on product spaces,

Dieudonné wrote, one usually proves as a key lemma the fact that continuous functions on the

product of two compact spaces can be uniformly approximated by product functions (i.e.

f(x)g(y)). While the usual proof draws on Weierstrass’ approximation theorem, Dieudonné’s

proof relies on a new Lemma:

Lemma.- Let E be a compact space, A1, A2,…, An a finite number of open sets

whose union is identical to E. One can find a finite number m of non-negative

numerical functions λk(x), defined and continuous in E, such that λk
-1 (z) > 0 is

contained in one of the Ai sets (i = 1,2,…,n ; k = 1,2,…,m), and that, identically,

                                                          
108 This knowledge is partly based on Dieudonné’s account (Dieudonné 1981: 698).
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These functions were used by Weil in his 1940 book L’intégration dans les groupes

topologiques (Weil 1940: 37). They were quickly introduced by other Bourbaki members in

several important textbooks, and thus become standard elements in the topology/geometry

toolbox. A generalised version, based on Urysohn’s lemma in normal topological spaces, is

presented in Bourbaki’s Topologie générale (Bourbaki 1948: 66); the term “partition continue

de l’unité” is used in this publication, but it had already appeared in print in Chevalley’s 1946

book on the Theory of Lie groups (Chevalley 1946). As is well known, this book is not merely

a monograph on Lie groups. Lie groups are only introduced after a very general study of two

other structures, namely topological groups and differentiable manifolds, and Chevalley’s

presentation of differentiable manifolds was to set the model that has most usually been

followed since. He used partitions of  unity to define the integration of continuous functions

on a smooth, compact, oriented manifold (Chevalley 1946: 161). Partitions of unity also play

an important part in De Rham’s Variétés différentiables (Rham 1955), a part on which De

Rham110 layd the emphasis in the introduction to the book (Rham 1955: v). Apparently he was

then unaware of Bochner’s quick and direct construction of smooth partitions of the unity,

since he first used Dieudonné’s continuous partitions, then smoothed them out by convolution

with mollifiers. De Rham had been using partitions of the unity for several years, and

Hermann Weyl had probably heard of them from him, in the 1950 Princeton seminar on

harmonic integrals that De Rham and Kodaira organised under Weyl and Siegel’s supervision.

Weyl uses “Dieudonnésche Faktoren” in the third edition of his Idee der Riemann’schen

Fläche (Weyl 1955: 65), and this is part of the overall revamping of the topological toolbox:

out with cellular decompositions and combinatorial topology, in with open coverings and

algebraic topology.

Bourbakian partitions of unity play a role beyond topology and geometry. For instance,

they are also core elements in Laurent Schwartz’s 1951 book, the Théorie des distributions,

although no such things were to be found in the first papers on distributions (1946). In 1951,

                                                          
109 “Lemme.- Soit E un espace compact, A1, A2,…,An un nombre fini d’ensembles ouverts dont la réunion est
identique à E. On peut trouver un nombre fini m de fonctions numériques non négatives λk(x) définies et
continues dans E, telles que l’ensemble  λk

-1 (z) > 0 soit contenu dans un des ensembles Ai (i = 1,2,… ,n ; k =

1,2,…,m) et que l’on ait identiquement  ∑
=

=
m

k

k x
1

1)(λ .”   (Dieudonné 1937: 593)

110 Of course, De Rahm was not a member of Bourbaki in the strict sense, but the connections with Bourbaki
members are just too numerous to be listed : friendship (and rivalry) with Henri Cartan, exchanges of ideas on
analysis on manifolds with Weil (Weil 1947), early use of Schwartz’s notion of distribution etc.



partitions of unity are closely associated to the introduction of a theme which, again, was

absent in the early papers, namely the theme of “local and global”; it could be argued that, at

least in this case, the tool and the theme are the two sides of the same coin. In order for

local/global to play an structural role in his theory of distribution, Schwartz first defines the

support of a distribution, a notion which is not altogether straightforward, since distributions

are not functions defined on Rn domains (in which case the notion of locus of zeroes is

straightforward) but functionals on spaces of real-valued functions defined in Rn domains:

A distribution T is said to be null in a open set Ω of Rn if T(ϕ) = 0 whenever ϕ∈D

has its support in Ω. Two distributions T1, T2 are said to be equal in Ω if T1-T2 is null

in Ω. This definition allows for a local viewpoint on distributions, like the one we have

on functions or measures; we will be able to write equalities between distributions for

an open set Ω of Rn, without prejudging in the least what holds in Rn as a whole. 111

Once this definition allows for a “local viewpoint” on distributions, partitions of unity can

be used to prove the fundamental patching-up principle (“principe du “recollement des

morceaux” ”):

“Patching-up” principle.- Theorem IV. Let {Ωi} be a (finite or infinite) family of

open sets, whose union in Ω; moreover, let {Ti} be a family of distributions depending

on the same family I of indices. Distribution Ti is defined on open set Ωi; it is

furthermore assumed that, if Ωi and Ωj have non-empty intersection, Ti and Tj coincide

on this intersection. Then there exists one and only one distribution, T, defined in Ω,

which coincides with Ti in every open set Ωi. 
112

The local/global theme is a leitmotiv throughout the whole book: in the introduction to the

third chapter, Schwartz writes “This chapter will be devoted to the study of the convergence

of distributions on the one hand; to their local and global structure, on the other hand”113. It is

shown, for instance, that every distribution locally coincides with that associated to a

                                                          
111 “On dit qu’une distribution T est nulle dans un ensemble ouvert Ω de Rn si T(ϕ) = 0 toutes les fois que ϕ∈D a
son support contenu dans Ω. Deux distributions T1, T2 sont dites égales dans Ω si T1-T2 est nulle dans Ω. Cette
définition permet de considérer les distributions, comme les mesures ou les fonctions, d’un point de vue local ;
on pourra écrire des égalités entre distributions pour un ouvert Ω de Rn, sans préjuger en rien de ce qui se passe
dans l’espace Rn entier.” (Schwartz 1951: 25)
112 “Principe du « recollement des morceaux ».- Théorème IV. Soit {Ωi} une famille finie ou infinie d’ouverts,
de réunion Ω ; soit d’autre part {Ti} une famille de distributions dépendant du même ensemble d’indices I. La
distribution Ti est définie dans l’ouvert Ωi ; on suppose de plus que, si Ωi et Ωj ont une intersection non vide, Ti
et Tj coïncident dans cette intersection. Alors il existe une distribution et une seule, T, définie dans Ω, qui
coïncide avec Ti dans chaque ouvert Ωi.” (Schwartz 1951: 26)
113 “Ce chapitre va d’une part étudier la convergence des distributions, d’autre part étudier leur structure locale et
globale” (Schwartz 1951: 65)



continuous function, and an example shows that it need not be globally so (Schwartz 1951:

83). For several theorems, it is clearly stressed that they exhibit the local to global form, for

instance: “If division by H is locally possible, it is globally possible”114.

The same link between the tool (partitions of unity) and the theme (local/global conceptual

tension) was clear in Chevalley’s Theory of Lie groups. As Chevalley clearly puts in the

introduction, his goal is to make up for the outrageous lack of a basic but thorough exposition

of the theory of differentiable manifolds and Lie groups from the global viewpoint:

Expository books on the theory of Lie groups generally confine themselves to the

local aspect of the theory. This limitation was probably necessary as long as general

topology was not yet sufficiently well elaborated to provide a solid base for a theory in

the large. These days have now passed, and we have thought that it would be useful to

have a systematic treatment of the theory from the global viewpoint. (Chevalley 1946:

vii)

As far as sheaf cohomology is concerned, fine resolutions would lose their central role in

the 1950s, with the introduction of more general notions such as those of projective and

injective resolutions, in a new, category-theoretic framework. Yet in the 1945-1950 period,

partitions of unity played an important part in the settings which Bourbaki members devised

for both classical theories (as in Chevalley’s Theory of Lie Groups) and brand new ones (as in

Schwartz’s theory of distributions). They may look like a mere handy trick (and, in the case of

sheaf cohomology, a disposable one), but a trick of somewhat general and architectural

value: general in so far as they are not constrained by specific disciplinary boundaries;

architectural in so far as they go hand in hand with a conceptual rewriting that centred on the

local-global tension. When, in 1946, Leray started to develop his idea of a long cohomology

exact sequence associated to a fibre map, “local and global” was not clearly part of the

research programme; it would be in 1949.

In the next two paragraphs, we will present Cartan’s 1950/51 theory of sheaf cohomology,

and stress the role of two neighbouring theories in Cartan’s streamlining of Leray’s ideas:

fibre-bundle theory and group cohomology.

The fibre-bundle model.

The definition of sheaves that Cartan presented in his 1950/51 topology seminar differs

significantly from that of system of local coefficients (Steenrod) and from Leray’s notion of

                                                          
114 “Si la division par H est possible localement, elle est possible globalement” (Schwartz 1951: 124).



faisceaux. The presentation draws on notions of base space, total space, projection and

sections which are clearly modelled after the presentation of fibre-bundles. The total space is

first introduced:

Definition: Let K be a commutative ring with unit element (…). A sheaf of K-

modules on a (regular) topological space X is a set F, endowed with a map p (called

the “projection”) from F to X, and with the two following structures:

1) for each point x ∈ X, the inverse image p-1(x) = Fx is endowed with a

K-module structure;

2) F is endowed with a topological structural (usually not Hausdorff)

satisfying these two conditions: (α) the laws of composition of F (not everywhere

defined) defined by the K-module structures are continuous; (β) projection p is a

local  homeomorphism (i.e. every element of F has an open neighbourhood which

p maps bi-univocally and bi-continuously on an open subset of X). 115

This definition via a total space (espace étalé) had been devised by Lazard in 1949/50

(Cartan 50/51a: 1). Continuous sections are then defined, Γ(F,X) denoting the K-module of

sections of sheaf F over open subset X of base space X. Since modules are modules of

functions, the definition of the restriction morphism Γ(F,Y) → Γ(F,X) (if X⊂Y) is

straightforward; it is noted that, for any point x of X, the Fx module can be identified with the

direct limit of the Γ(F,X) when X goes through the directed set of open neighbourhoods of x.

This, in turn, gives a method of construction of sheaves:

Reciprocally: let us assume that, to each open set X of a fundamental system of

space X, a module FX is attached, and, to each couple (X,Y) of open sets such that Y ⊃

X (granted FY and FX are defined), a homomophism fXY from FY to FX is associated in

such a way that, if X ⊂ Y ⊂ Z, homomorphism fXZ is the composite fXYfYZ. These data

define a sheaf F as follows: to each point x ∈ X, let us consider the module Fx,

inductive limit of the FX relative to the open sets containing x; on the union F of the Fx

a structure of sheaf is defined, first by defining map p which, to an element u of F,

associates the point x such that u ∈ Fx, then by taking as a system of open sets V(X,x)

                                                          
115 “Définition : Soit K un anneau commutatif à élément unité (…). Un faisceau de K-modules sur un espace
topologique (régulier) X est un ensemble F, muni d’une application p (dite « projection ») de F sur X et des 2
structures suivantes :
1) pour chaque point x ∈ X, l’image réciproque p-1(x) = Fx est munie d’une structure de K-module ;
2) F est muni d’une structure topologique (en général non séparée) satisfaisant aux deux conditions : (α) les

lois de compositions de F (non partout définies) définies par les structures de K-module des Fx sont
continues ; (β) la projection p est un homéomorphisme local (i.e. tout élément de F possède un voisinage
ouvert que p applique biunivoquement et bicontinûment sur un ouvert de X).” (Cartan 1950-51a 1)



of the topology of F the following sets: arbitrarily take an open set X ⊂ X such that FX

is defined, an element v ∈ FX, and the set V(X,x) of images of v in all the Fx modules

relative to the points x of X. 116

Although a general fibre-bundle structure had been introduced by Seifert and Threlfall

(Seifert 1933), the terms “base space” and “total space” were introduced by Whitney in his

1935 definition of sphere-spaces (Whitney 1935); Whitney had also laid the emphasis on the

notion of sections (which he called projections!) and on the problem of global prolongation of

local sections. Later presentations of what fibre-bundles are (and are about), such as that of

Steenrod (Steenrod 1942) or Ehresmann and Feldbau (Ehresmann and Feldbau 1941), also

linked those three elements: (1) the definition of an abstract geometric structure involving a

space over another space, (2) the fundamental tension between local117 but not global triviality

of the topological structure (product structure), and (3) the idea that the question of section

prolongation is the right way to tackle fibre-bundle problems.

Steenrod added to that scheme a very clear analysis of how problems which were

classically formulated in terms of magnitudes defined on a given space could be studied in

terms of sections of a fibre-bundle. He used the example of tensors on a differentiable

manifold: the standard presentation (as in Weyl’s, Elie Cartan’s and Schouten’s works on

connections in the early 1920s) was that tensors were magnitudes that could locally be written

with explicit (extrinsic) formulae of some sort (in an arbitrary coordinate system); their

intrinsic nature was warranted by the transformations laws according to which these formulae

transformed under changes of local maps. Steenrod suggested a completely new setting: he

first defined the set of point-tensors at a point of the manifold; he then showed that the set of

all point tensors at all points of the manifold can be made into a new differentiable manifold,

provided the classical transformation laws are read as patching-up rules; he eventually

explained that this new manifold is the total space of a fibre-bundle over the first manifold,

and that classical tensors are just sections of this fibre-bundle118.

                                                          
116 “Réciproquement : supposons que l’on ait attaché, à chaque ouvert X d’un système fondamental de l’espace
X, un module FX, et, à chaque couple (X,Y) d’ouverts tels que Y ⊃ X et que FY et FX soient définis un
homomorphisme fXY de FY dans FX, et cela de manière que, si X ⊂ Y ⊂ Z l’homomorphisme fXZ soit le composé
fXYfYZ. Ces données définissent un faisceau F comme suit : pour chaque point x ∈ X, on considère le module Fx,
limite inductive des FX relatifs aux ouverts X contenant x ; sur la réunion F des Fx, on définit une structure de
faisceau, d’abord en définissant l’application p qui, à un élément u de F, associe le point x tel que u ∈ Fx, puis en
prenant comme système d’ouverts V(X,v) de la topologie de F les ensembles suivants : on prend arbitrairement
un ouvert X ⊂ X tel que FX soit défini, un élément v ∈ FX, et l’ensemble V(X,v) des images de v dans tous les
modules Fx relatifs aux points x ∈ X.” (Cartan 1950-51a 3)
117 In this context, “local” means “local on the base”.
118 Or of sub-fibre-bundles, such as, for instance, the bundle of  non-singular quadratic forms when a pseudo-
riemannian metrics is to be defined.



The same ideas (and several others) were presented in a more general setting in the 1941-

1943 series of note that Bourbaki-member Ehresmann and his student Feldbau published in

the Comptes rendus de l’Académie des Sciences. Cartan’s twofold presentation of the sheaf

structure is strictly modelled after Ehresmann’s presentation of the fibre-bundle structure: he

first defined fibre-bundles in terms of projection map, algebraic structure on the fibres p-1(x)

(given by the action of a group) and locally trivial structure119; the latter then presented a

“méthode de construction d’un espace fibré” (Ehresmann 1941: 762) in which data over an

open covering (Ui) of a base space are patched-up according to rules whose general form is

expressed in terms of maps from Ui ∩Uj to the group
120. Ehresmann also introduced several

ideas that have no equivalent in Steenrod’s presentation. The most fundamental ones are those

of principal fibre-bundle and associated fibre-bundles. They allow him to show that classical

algebraic objects (group morphism, group representation) have fibre-bundle analogues.

This quick overview of the early years of fibre-bundle theory show that the links between

sheaves (1950/51 style) and fibre-bundles are more varied that one might think. It was clear

from the outset that sheaf cohomology evolved from Steenrod’s cohomology with local

coefficients and that Leray aimed for a cohomological analogue of the long homotopy

sequence associated to a fibre-bundle. But many aspects of the 1950/51 sheaf concept were

also modelled after the fibre-bundle concept: twofold presentation (axiomatic description /

standard mode of construction), construction of a total space from local data, formulation of a

single core problem (section prolongation). This does not mean, of course, that sheaves are

instances of fibre-bundles, since the sheaf structure requires no local product structure. The

fact that fibre-bundles are special kinds of sheaves is not clearly stated in the 1950/51

seminar, in which only the example of a trivial bundle (i.e. product space) is given in the list

of sheaves examples (Cartan 1950-51a: 3).

The notion of fibre-bundle also plays a part in the history of Cousin problems in the 1945-

1950 period, a part that is independent from the design of sheaf cohomology in topology. In

his 1950 talk on Problèmes globaux dans théorie des fonctions de plusieurs variables

complexes, Cartan presented the outline of his global theory of ideals of holomorpic functions.

After expounding the Cousin II problem in this setting, he stressed that the new ideal-theoretic

formulation of the problem fails to capture the original problem: it aims at a global ideal that

generates the punctual principal ideals; to solve the Cousin problem, you need to find a single

                                                          
119 This local triviality element is of course not retained in the definition of sheaves.
120 The compatibility conditions over Ui∩Uj∩Uk are stated (Ehresmann 1941 : 762).



function that generates these ideals. He then gave a new, fibre-bundle theoretic formulation of

Cousin II; B denotes a domain of holomorphy:

A Cousin datum in B defines the following new topological space E: a point of E

will be, by definition, a couple (z,f) made up of a point z of B and a generating element

f of the principal ideal Iz attached to point z; we shall identify the couples (z,f) and

(z,f’) if z = z’ and if the quotient f/f’ (which is holomorphic and ≠ 0 at point z) equals

one at z. Let the multiplicative group C* of non-null complex numbers operate on E.

(…) In the parlance of modern topology, E is a principal fibre bundle with group C*,

of base space B. The hypothesis according to which the ideals Iz form a coherent

system expresses the fact that each fibre has a neighbourhood which is isomorphic to

the product U×C* of an open set U of B by fibre C*; this enables us to define on E a

structure of complex analytic variety.

(…) One immediately reckons that a solution to the Cousin problem defines an

analytic section of that fibre bundle. (…) Thus, for the Cousin problem to have a

solution (…) our fibre bundle E has to be trivial; 121

This directly echoes Steenrod’s construction of tensor-bundles, and draws on Ehresmann’s

characterisation of the triviality of principal bundles by the existence of a global section. It

also gives new insight on the topological nature of Cousin II (on domains of holomorphy), a

nature that Oka had clearly established. In fact, this reformulation of Cousin II in terms of

principle bundle over an analytic manifold comes from André Weil, as Cartan acknowledged

in the 1950 talk. For instance, Weil had expounded the algebraic geometry analogue in 1949,

in a talk on Fibre-spaces in Algebraic Geometry (Weil 1949). In this context, he used the

Zariski topology on an abstract algebraic manifold to show that many standard questions in

algebraic geometry can be restated as questions about fibre-bundles; the basic example is that

of divisor classes and line-bundles. He also pointed to the fact that this new setting should

help define new invariants in algebraic geometry, such as, for instance, the algebraic

analogues of Stiefel-Whitney-Chern classes.

                                                          
121 “Une donnée de Cousin dans B définit un nouvel espace topologique E que voici : un point de E sera, par
définition, un couple (z,f) formé d’un point z de B et d’un élément générateur f de l’idéal principal Iz attaché au
point z ; on identifiera les couples (z,f) et (z’,f’)  si z = z’ et si le quotient f/f’ (qui est holomorphe et ≠ 0 au point
z) est égal à un au point z. Faisons opérer, dans cet espace E, le groupe multiplicatif C* des nombres complexes
≠ 0. (…) Dans le langage de la topologie moderne, E est un espace fibré principal, de groupe C*, ayant B pour
base. L’hypothèse selon laquelle les idéaux Iz forment un système cohérent exprime que chaque fibre possède un
voisinage isomorphe au produit U×C* d’un ensemble ouvert U de B par la fibre C* ; ceci permet de définir, sur
E, une structure de variété analytique-complexe.



Morphisms, exactness: the general framework of axiomatic (co)homology

In Cartan’s 1950/51 introductory seminar talk, the definition of a sheaf of K-modules on a

topological space is followed by the definitions of a sub-sheaf and a quotient sheaf. The

notion of sheaf homomorphism is then defined, and it is remarked that such a homomorphism

induces a K-module homomorphism between modules of sections over an open subset X:

“This defined Γ(F,X) as a functor of the sheaf F”122. The definitions of kernel-sheaf and

image-sheaf associated to a sheaf homomorphism are then given, which allows for the

definition of the sheaf-theoretic notion of an exact sequence. Starting from a short exact

sequence 0→F’→F→F’’→0,

Given such an exact sequence, the sequence of associated homomorphisms

0 → Γ(F’,X) → Γ(F,X) → Γ(F’’,X)

is exact (that stems trivially from the definitions). But, in general, homomorphism

Γ(F,X) → Γ(F’’,X) is not onto, in spite of the fact that F → F’’ is onto. We will take

up that issue again later. 123

Indeed, the two other talks which Cartan gave in his 1950/51 topology seminar are devoted

to the development of sheaf cohomology. Talk 2 is devoted to the introduction of Φ-families

of closed, paracompact subsets of the base set X (Cartan 1950-51b: 3), and to lemmas about

the behaviour of fine sheaves when sections ΓΦ with support in a Φ-family are studied. These

preliminary lemmas are used in the third talk, in which Cartan presented an axiomatic theory

of sheaf cohomology. The ring K is assumed to be a principal ideal domain:

Axioms of a cohomological theory: (…) Let us assume that the following are given:

I. For every sheaf F of K-modules (on a space X), and for every integer q,

a K-module HqΦ(X,F), called the q-th cohomology module of space X, relative

to family Φ and coefficient sheaf F (…)

II. For every sheaf homomorphism F → F’, and for every integer q, a

homomorphism HqΦ(X,F) → H
q
Φ(X,F’).

                                                                                                                                                                                    
(…) On voit aussitôt qu’une solution du problème de Cousin définit une section analytique de cet espace fibré.
(…) Ainsi, pour que le problème de Cousin ait une solution (…) notre espace fibré E doit être trivial;” (Cartan
1950b: 161)
122 “Ceci définit Γ(F,X) comme foncteur du faisceau F”122 (Cartan 1950-51a: 5)
123 “Etant donnée une telle suite exacte, la suite des homomorphismes associés 0 → Γ(F’,X) → Γ(F,X) →
Γ(F’’,X) est exacte (trivial à partir des définitions). Mais, en général, l’homomorphisme Γ(F,X) → Γ(F’’,X)
n’est pas sur, bien que F → F’’ soit sur. On reviendra plus loin sur cette question.” (Cartan 1950-51a: 5)



III. For every exact sequence of sheaves and homomorphisms 0 → F’ → F

→ F’’ → 0 , and for every integer q, a homomorphism HqΦ(X,F’’) →

Hq+1Φ(X,F’).

With respect to the above data, the following 6 axioms are assumed to hold:

(a) HqΦ(X,F) = 0 for q < 0, H
0
Φ(X,F) = ΓΦ(F) ;

(b) If F is fine, HqΦ(X,F) = 0 for any q ;

(c) For an exact sequence 0 → F’ → F → F’’ → 0 , the sequence

… HqΦ(X,F’) → qβ  HqΦ(X,F) → qγ  HqΦ(X,F’’) → qδ  Hq+1Φ(X,F’) → …

(where βq and γq are the homomorphisms defined at II, and δq is the

homomorphism defined at III) is an exact sequence ; 124

The three other axioms express the functorial nature of HqΦ and of the connecting

homomorphisms HqΦ(X,F’’) → H
q+1

Φ(X,F’). The bulk of the talk is devoted to the proof of

the existence of such a sheaf cohomology theory; “uniqueness” is also proved, after the notion

of isomorphism of cohomology theories has been defined.

The style of this presentation looks strikingly new, for instance when compared with

Leray’s versions of his sheaf cohomology theory. This fact is accounted for in the clearest of

ways, however, by the immediate context. The 1950/51 seminar is devoted to the study of

cohomology theories, in topology and beyond. The first four talks deal with group

cohomology: the first two talks were given by Samuel Eilenberg, the other two by Cartan.

This series of talks starts with an axiomatic presentation of group homology and cohomology,

which goes along the very same lines as Cartan’s presentation of sheaf cohomology: the role

that fine sheaves play in sheaf-cohomology, free abelian groups play for group-homology,

and injective groups play for group-cohomology (Eilenberg 1950-51a). Several applications

                                                          
124

 “Axiomes d’une théorie de la cohomologie : (…) On suppose que l’on s’est donné
I. Pour tout faisceau F de K-modules (sur l’espace X), et pour tout entier q, un K-module HqΦ(X,F), appelé

le q-ième module de cohomologie de l’espace X, relativement à la famille Φ et aux faisceau de
coefficients F (…)

II. Pour tout homomorphisme de faisceau F → F’, et pour tout entier q, un homomorphisme HqΦ(X,F) →
HqΦ(X,F’).

III. Pour toute suite exacte de faisceaux et d’homomorphismes 0 → F’ → F → F’’ → 0 , et pour tout entier
q, un homomorphisme HqΦ(X,F’’) → H

q+1
Φ(X,F’).

Relativement aux données précédentes, on suppose vérifiés les 6 axiomes suivants :
(a) HqΦ(X,F) = 0 pour q < 0, H

0
Φ(X,F) = ΓΦ(F) ;

(b) Si F est fin, HqΦ(X,F) = 0 pour tout q ;
(c) Pour toute suite exacte 0 → F’ → F → F’’ → 0 , la suite

… HqΦ(X,F’) → qβ  HqΦ(X,F) → qγ  HqΦ(X,F’’) → qδ  Hq+1Φ(X,F’) → …
(où βq et γq sont les homomorphismes définis en II, et δq est l’homomorphisme défini en III) est une suite
exacte ;” (Cartan 1950-51c: 1)



are expounded, for instance the fact that a homology theory can be associated to functor

−⊗ΠA, and a cohomology theory to functor HomΠ(−,A) (Eilenberg 1950-51b). These echoing

talks on group- and sheaf-cohomology are but part and parcel of Cartan and Eilenberg’s

collaborative work on homology theories, which would result in their celebrated Homological

Algebra (Cartan and Eilenberg 1956). In this book, written between 1950 and 1953125, Cartan

and Eilenberg generalised this axiomatic approach (though in algebraic contexts only126) and

introduced the general notion of derived functors for non left-exact or non right-exact additive

functors.

The wish to present the cohomology of sheaves in the larger context of cohomology

theories thus led to the formulation of a single core problem: to study the non right-exactness

of the section functor; this functorial formulation, in turn, called for an emphasis on sheaf

morphisms and short exact sequences of sheaf morphisms. It should be stressed that, until this

change of setting, morphisms played only a small part in the theories of cohomology with

local coefficients. For instance, there are no morphisms between systems of local groups in

Stennrod’s 1943 paper on this new type of cohomology theory. Even in Leray’s 1949

exposition of his theory of cohomology with coefficients in a faisceau, morphisms are just

mentioned in passing, after the definition of a sub-sheaf and a quotient sheaf (Leray 1949:

70). As we saw earlier, Leray is primarily concerned with morphisms between base spaces,

not with morphisms between sheaves on the same space; the latter need to be defined,

however, to allow for a definition of the homology sheaf of a sheaf of differential

complexes127.

One should remember that when Cartan introduced his structure of ideals of holomorphic

functions, he mentioned ideals and modules (i.e. submodules of the product of a finite number

of copies of the structure sheaf), but never introduced homomorphisms. It could be argued

that, if only short exact sequences are to be studied, definitions of sub- and quotient objects

can prove adequate. But those are nowhere to be found in Cartan’s writings on ideals of

holomorphic functions; neither in 1940-1944, nor even in the 1950 paper Idéaux et modules

de fonctions analytiques de variables complexes (Cartan 1950a). As we mentioned earlier, the

latter is mainly devoted to proofs of coherence and to a simplification of terminology. The

general notions remain the same as in 1944, with some slight changes of formulations, such

as, for instance, the introduction of direct limits (Cartan 1950a: 31), and a new definition of

                                                          
125 See Cartan’s 1973 overview of his mathematical work in (Cartan 1979 : XVII).
126 The topological contexts are, of course, dealt with in (Eilenberg and Steenrod 1952).
127 Since the differential map d is a sheaf morphism.



coherence. Sheaves of relations are not seen as kernels; the fact the “Cousin data” are systems

of objects of a given type, which coincide up to objects of another type, is not described in

terms of quotient structure.

The return of Cousin

There is a striking contrast between Cartan’s 1950 paper on ideals and modules of

holomorphic functions and the last talks of the 1951/52 seminar. The first one remains in the

1940/44 setting, whereas the talks given by Cartan and Serre in the spring of 1952 expound

the cohomology theory of analytic sheaves on Stein spaces. This material was presented to the

general mathematical audience in March 1953 at a Colloque sur les fonctions de plusieurs

variables ((Caran 1953), (Serre 1953)), in Brussels. Remmert reported that, upon attending

Serre’s talk at that conference, one of the German participants commented: “We have bows

and arrows, the French have tanks.”128

After a 1949/50 seminar devoted to the study of fibre-spaces and homotopy theory, and a

1950/51 seminar devoted to cohomology theories (of groups and sheaves), the 1951/52 Cartan

seminar was devoted to analytic functions in several variables. The first seventeen talks are

devoted to a clear and up-to-date presentation of the topics that had been of interest to Cartan

for several years: theory of important classes of space (Kähler manifolds, manifolds defined

by various convexity properties, Stein spaces129), theta functions and abelian functions (talks

by Cartan and Cerf), the Weil integral (M. Hervé); a long series of talks is devoted to the

study of local questions which had become central elements in Cartan and Oka’s general

study of ideals of holomorphic functions: rings of convergent power series (F. Bruhat130),

ideal of an analytic subvariety at one of its points (Bruhat, Cartan, Frenkel), sheaf of relations

between holomorphic functions (Frenkel, Malatian).

The last three talks are devoted to the cohomology of coherent sheaves on Stein spaces,

with talks by Cartan stating and proving the main theorems and a final talk by Serre giving

some important applications. Aside from proofs, the content of these talks is exactly the same

as that of the 1953 conference talks in Brussels.

The two main theorems are labelled A and B:

                                                          
128 „Wir haben Pfeil und Bogen, die Franzosen haben Panzer.“ (Hilton, Hirzebruch and Remmert 1991: 277)
129 These talks were all given by Cartan.
130 As in several other talks, the theory is expounded for any non-discrete, complete valued field.



Theorem A: Let X be a Stein manifold, or a compact subset of a Stein manifold

which is identical to its envelope. Let F be a coherent analytic sheaf on X. Then, for

any point x ∈ X, the image, in the Ox-module Ix, of the module of sections H
0(X,I),

generates Ix for its Ox-module structure. 
131

To prevent any misunderstanding, Cartan comments that this theorem doesn’t say that any

local section has a global prolongation; rather, it says that any local section (say, at x) can be

written as a linear combination of global sections, with coefficients in Ox. This aspect is

typical of Cartan’s global theory of ideals of holomorphic functions: as from 1940, a central

feature of that theory was the idea that two types of restrictions/prolongations could be

considered, one in terms of functions, and one in terms of ideals (or modules) generated by

functions. The fact that a change of domains (by restriction or extension) entails a change of

base rings for the algebraic structures under study also comes from the 1940/44 theory, and no

such element played a part in the 1950/51 sheaf cohomology theory. In spite of its

cohomological formulation, theorem A is the final result of the “théorie globale des idéaux de

fonctions holomorphes” research line. Theorem B, however, had no counterpart in the

1940/44 theory, at least for q ≥ 2:

Theorem B: Let X be a Stein manifold, or a compact subset of a Stein manifold

which is identical to its envelope. Let F be a coherent analytic sheaf on X. Then the

cohomology modules Hq(X,F) vanish for all integers q ≥ 1. 132

Although the seminar talks on these topics were given by Cartan and Serre in the spring of

1952, the transcripts were written in the autumn, and Serre warns the reader that this text

differs significantly from the actual talk (Serre 51/52: 1). Actually, some information can be

drawn from a series of letters from Serre to Cartan, which were later published (Serre 1991);

these documents help understand how important problems in the theory of functions of

several complex variables were reformulated in the setting of sheaves and fibre-bundles. In a

letter (dated April 30th 1952), Serre gave the cohomological formulation of the conditions for

solving the Cousin problems:

Let X be a complex analytic variety; we will introduce a number of sheaves on X:

Fa: sheaf of elements of holomorphic functions at all points of X (this sheaf is

endowed with the addition of hol. f.)

                                                          
131 “Théorème A : Soit X une variété de Stein, ou un compact d’une variété de Stein identique à son enveloppe.
Soit F un faisceau analytique cohérent sur X. Alors, pour tout point x ∈ X, l’image, dans le Ox-module Ix, du
module des sections H0(X,I), engendre Ix pour sa structure de module sur Ox.” (Cartan 1951-52: 7)



Fm: multiplicative sheaf of elements of invertible holomorphic functions.

Ga: same definition as for Fa, with meromorphic functions instead of holomorphic

functions.

Gm: same definition as for Fm, with non-null meromorphic functions instead of non-

null holomorphic functions.

(…) One can thus consider the cohomology groups of space X with values in these

various sheaves. One first checks the following:

For the additive Cousin pb. to be always solvable in X, it is necessary and sufficient

that H1(X,Fa)→H
1(X,Ga) be one to one and onto; for the multiplicative problem to be,

it is necessary and sufficient that H1(X,Fm)→H
1(X,Gm) be one to one and onto.

In particular, for the additive Cousin pb. to be solvable, it is sufficient that

H1(X,Fa)=0; same for the multiplicative one. 
133

However, it seems that theorem B was not known to Serre in May 1952. He writes that if X

is a domain of holomorphy, Cartan’s work on ideals of holomorphic functions show that

H1(X,Fa) = 0, but that it is not known whether or not H
n(X,Fa) = 0 (n≥2) (Serre 1991: 279). In

the next letter, he draws various conclusion from the hypothesis Hi(X,Fa) = 0 (i>0), remarking

that “to impose this condition is not a priori ridiculous, since we know it holds for cubes, and

presumably for many other spaces”134. This case is the starting point of the proof given in

October 1952 (Cartan 1951-52: 7).135

                                                                                                                                                                                    
132 “Théorème B. Soit X une variété de Stein, ou un compact d’une variété de Stein identique à son enveloppe.
Soit F un faisceau analytique cohérent sur X. Alors les modules de cohomologie Hq(X,F) sont nuls pour tout
entier q ≥ 1.” (Cartan 1951-52: 7)
133 “Soit X une variété analytique complexe; on va introduire un certain nombre de faisceaux sur X:
Fa: faisceau des éléments de fonctions holomorphes en tout point de X (ce faisceau muni de l’addition des f.hol.)
Fm: faisceau multiplicatif des éléments de fonctions holomorphes inversibles.
Ga: même définition que Fa, le fonctions méromorphes remplaçant les fonctions holomorphes.
Gm: même définition que Fm, les fonctions méromorphes non nulles remplaçant les fonctions holomorphes non
nulles.
(…) On peut donc parler des groupes de cohomologie de l’espace X à valeurs dans ces différents faisceaux. On
vérifie d’abord ceci:
Pour que le pb. de Cousin additif soit toujours résoluble dans X, il faut et il suffit que H1(X,Fa)→H

1(X,Ga) soit
biunivoque; pour que le problème multiplicatif le soit, il faut et il suffit que H1(X,Fm)→H

1(X,Gm) soit
biunivoque.

En particulier, pour que le pb. de Cousin additif soit résoluble, il suffit que H1(X,Fa)=0, de même pour le
multiplicatif.” (Serre 1991: 278)
134 “imposer cette condition n’est pas ridicule a priori, puisqu’on sait qu’elle est vérifiée par les pavés, et sans
doute par bien d’autres espaces” (Serre 1991: 279)
135 It seems the fact that sheaf cohomology turned out to be exactly the right framework to tackle the 1940/44
research programme really came as a surprise to Cartan : see (Cartan 1999 : 787) and Serre’s talk at the Cartan
centenary celebration (Serre 2004).



The restating of the Cousin problems in the new theoretical framework relies on the notion

of quotient sheaf. In Cartan’s 1953 conference talk, M denotes the sheaf of meromorphic

functions:

It is clear that O is a subsheaf of M. Let us interpret the quotient sheaf M/O; if m ∈

Mx, the class of m in Mx/Ox is called the principal part of m. A section of M/O is

called a system of principal parts. Let us consider homomorphism ϕ: Γ(X,M) →

Γ(X,M/O); to each meromorphic function in X, ϕ associates a system of principal

parts. The classical additive Cousin problem (or first Cousin problem) deals with the

characterisation, among systems of principal parts in X, of those that come from a

meromorphic function on X; that is, to characterise the image of homomorphism ϕ. 136

In the 1940/44 theory, neither homomorphisms nor quotients were considered. This new

formulation of the problem clearly derives from its being tackled by cohomological means. If

X is a Stein space, theorem B warrants that H1(X,O) = 0, so ϕ is onto and the additive Cousin

problem is always solvable. It should be noted that the surjectivity of map ϕ captures the fact

the classical Cousin I problem is solvable (i.e. a global meromorphic function can be found),

and not only the ideal Cousin I problem of 1940/44.

As to Cousin II, Serre’s 1953 reformulation reads:

We shall reformulate this problem in the sheaf language: let G be the sheaf of germs

of meromorphic functions on X (the composition law being multiplicative), F the

subsheaf of G made up of the germs of invertible holomorphic functions (that is, non-

null in the neighbourhood of the point at hand), let D be the quotient sheaf G/F; it is

clear that D is the sheaf of germs of divisors. 137

F is a multiplicative group and not a coherent O-module, so even on a Stein space it is not

necessary that H1(X,F) vanish. To get some information, Serre relies on the sheaf theoretic

rewording of the classical log transformation138: there is a natural sequence of sheaves of

                                                          
136 “Il est clair que O est un sous-faisceau de M. Interprétons le faisceau quotient M/O; si m ∈ Mx, la classe de m
dans Mx/Ox s’appelle la partie principale de m. Une section de M/O s’appelle un système de parties principales.
Considérons l’homomorphisme ϕ: Γ(X,M) → Γ(X,M/O); à chaque fonction méromorphe dans X, ϕ associe un
système de parties principales. Le classique problème additif de Cousin (ou premier problème de Cousin)
consiste à caractériser, parmi les systèmes de parties principales dans X, ceux qui proviennent d’une fonction
méromorphe dans X; autrement dit, à caractériser l’image de l’homomorphisme ϕ.” (Cartan 1953: 46)
137 “Nous allons reformuler ce problème dans le langage des faisceaux: soit G le faisceau des germes de
fonctions méromorphes sur X (la loi de composition étant la multiplication), F le sous-faisceau de G formé des
germes de fonctions holomorphes inversibles (c’est-à-dire non nulles au voisinage du point considéré), D le
faisceau quotient G/F; il est clair que D est le faisceau des germes de diviseurs.” (Serre 1953: 60)
138 This transformation had been used by Poincaré (to transform zeroes into singularities, in a context where
there is control over singularities but not over zeroes) and Cousin (to apply an additive result to a multiplicative
problem).



groups 0 → Z → O → F → 0, where Z is the constant sheaf of integers and O → F is the

exponential map f → fie π2 ; the sequence is exact, since every non-vanishing holomorphic

function can be locally written as the exponential of a holomorphic function. Combining the

two long exact sequence of cohomology, and using the fact that, on a Stein space, Hq(X,O) =

0 (q≥1) gives a natural map H0(X,D) → H2(X,Z). This map can be interpreted geometrically:

a divisor can be seen as a set of subvarieties (of complex codimension 1 in a complex n-

dimensional space X), with integer multiplicities; this is an element of H2n-2(X,Z), which is

then mapped on its dual. Now, H2(X,Z) depends only on the topology of X, a fact that

captures Oka’s proof that the solvability of Cousin II (on a domain of holomorphy) is a purely

topological problem139. These aspects could not fit within the 1940/44 global theory of ideals

of holomorphic functions, since it only considered sheaves of O-modules (whereas the

interplay between such sheaves and group-sheaves are of the essence here), and the patching-

up arguments did not reach beyond the first cohomology groups. As Cartan stressed in his

talk:

The cohomological formulation of theorem B, and the idea of studying not only the

q = 1 case, but any q > 0 case, are both J.-P. Serre’s. 140

Needless to say, Serre also mentions Poincaré’s problem (though without paying heed to

coprimeness): “On a Stein manifold, any meromorphic function is the quotient of two

holomorphic functions.”141

Conclusion

We presented this narrative as a case study in the history of structuralism in non-algebraic

contexts, by focusing on the role of problems in the emergence of new structures (such as the

sheaf structure) and theories (such as sheaf cohomology). Though the narrative goes into

much more detail on the 1940-1953 period, in which structures are in play, we attempted to

seize the opportunity to follow the history of the Cousin problems from Poincaré’s 1883

paper.

The following of this lead over a rather long period of time is partly justified by the fact

that this historical line is systematically referred to in the works we mentioned, usually in the

                                                          
139 Independently from Cartan and Serre, Karl Stein had investigated these topological issues. See, for instance,
(Stein 1941) and (Stein 1951).
140 “La formulation cohomologique du théorème B, et l’idée d’étudier non seulement le cas q = 1, mais le cas q >
0 quelconque, sont dues à J.-P. Serre.” (Cartan 1953: 51)



introduction of the papers. However, presenting the history of a very specific family of

problems over such a large period of time (1883-1940) raises questions of method: how much

context should you take into account ? Should one stick to the mathematical description of

successive rational moves, such as, for instance, exhibiting a counter-example, generalising to

new domains, defining the topological analogue of an analytic problem? We attempted to give

our narrative a more historical turn – though without ever aiming at a general history of the

theory of functions of several complex variables – by focusing on what can be specific to the

medium-term history of a problem, or problem family.

As for Poincaré, we stressed the importance of two elements which would prove enduring

throughout the history of the Cousin problems: first, an ekthesis which relied on open

coverings and differences of a given type in the overlaps; second, a site technique of the “step

by step patching-up” type, which we also referred to as the “U∩V, U, V, U∪V” site technique.

However familiar both may have become, we endeavoured to show (within a limited space)

that both this type of ekthesis and this site technique were not common in the 1880s, and

pointed to a quite specific theoretical and technical context – that of Neumann and Schwarz’s

proof methods in potential theory – which would not be later associated to the Cousin

problems. Ekthesis and site technique both differ from what is to be found in Weierstrass’

original one-variable theorem; only the ekthesis is retained by Cousin, who relied on much

more standard site techniques when it came to give proofs. We also showed that Poincaré

never considered that this specific problem, along with several others that he tackled between

1880 and 1885, belonged to a family that should be labelled “global problems”, or “passing

from local data to global existence problems”. These problem labels emerged a little later;

they did not play a significant part in the history of the Cousin problems until Henri Cartan

engaged in the “théorie globale des idéaux de fonctions holomorphes”, in 1940. So many

elements (ekthesis, site technique, problem label), so many time-lines.

The period from 1895 to 1938 provides an interesting case study, since, in spite of the

development of the theory of functions of several complex variables, the theoretical

framework does not seem to change dramatically: the Cousin problems are clearly identified

as central and difficult problems for the theory, they are tackled with the same tools. The fact

that no breakthrough occurred does not mean these problems were just referred to in

monographs, to be passed on to the next generation of mathematicians: after hitting on a

counter-example, Gronwall (and Osgood) gave a restricted version of Cousin’s second

                                                                                                                                                                                    
141 “Toute fonction méromorphe sur une variété de Stein est quotient de deux fonctions holomorphes” (Serre
1953: 63).



theorem, just to be on the safe side; Cartan, Behnke and Stein defined Cousin properties and

investigated their links with a wealth of new, domain-defining properties; we termed this an

indirect use of problems. To make sense of the deep dissimilarity between Cousin I and

Cousin II, Oka defined and studied a topological analogue of Cousin II, thus showing its

purely topological nature (on domains of holomorphy).

We then investigated in greater detail how the Cousin problems got inserted into two

structural contexts: that of Cartan’s theory of ideals of holomorphic functions (1940-1950);

that of sheaf cohomology, as from 1951.

One could argue that the Cousin problems played only a pedagogical role in Cartan’s 1940

exposition of his research programme on ideals of holomorphic functions. Along this line, the

description would be the following: emulating van der Waerden’s reformulation of

elimination theory and algebraic geometry in terms of rings, ideals and modules, Cartan

engaged in the study of ideals of holomorphic functions; the Cousin problems were well-

known examples of the type of problems which this new theory aimed at tackling, thus

serving his expository purposes well; however, Cousin II was really too specific to be much

more than an emblem for the new theory, since it is a problem in complex codimension one,

whereas the new theory aimed at subvarieties in any dimension (including empty subvarities,

in the case of functions with no common zeroes). This new theory is “structural” in so far as it

imports concepts and theorems from moderne Algebra.

We claim this is not accurate, and fails to capture what gives this case study a more general

significance. The links between the Cousin problems and this particular instance of structural

transition are numerous and fundamental. Firstly, the main target problems which motivated

Cartan’s 1940 research programme had emerged in the context of recent attempts to tackle the

Cousin problems: Cartan’s 1934 attempt depended on the Weil integral, which, in turn,

depended on the holomorphic analogue of the classical polynomial Nullstellensatz; Oka’s

trick (which, among other things, served to bypass the ill-founded Weil integral) required that

it be proved that, in a polycylinder, holomorphic functions on a subvariety (of any

codimension) are restrictions of holomorphic functions over the whole space. Secondly, the

structure of “ideal of holomorphic functions” could seem to be a somewhat shallow

generalisation – of van der Waerden, or of Rückert’s algebraic study of the ring of convergent

power series – if it were not for its links with the Cousin problems. The definition of this new

structure enables Cartan to give an alternative reading of the Cousin problems: these problems

can be seen either in terms of functions (in which case a global function is aimed for) or in

terms of function ideals (in which case a global ideal is aimed for). The definition of the new



structure is an ideal-theoretic rewriting of Cousin II’s ekthesis, the latter problem serving here

as template problem; by this change of setting, Cartan did not only generalise the problem to

arbitrary codimension, he also changed the meaning of “being a solution the the Cousin

problem”. Thirdly, Cartan’s matrix generalisation of a fundamental lemma from Oka’s 1938

proof (a lemma which was already is Cousin’s paper) shows that the patching-up of ideals of

functions is more tractable than the patching-up of functions. This new “ideal”, generalised

(in terms of dimensions) and weaker (trading ideals for functions) form of Cousin problems

was too weak to solve the classical Cousin II problem, but potent enough to solve the target

problems. The move is structural in style and practice, since both a general structure and

general problem form are abstracted from Cousin data and Cousin problems; the general

structure is studied as such, which leads to the investigation of inner problems, and to the

identification of “coherence” as a new and fundamental abstract property. This style is

consistent with the model given by abstract algebra; this practice fits the general description

given by Bourbaki in their 1942 L’architecture des mathématiques (Bourbaki 1950).

The detailed study of the links between problem families and structural transition should

help flesh out the very general description of the structural approach that can be found, for

instance, in Bourbaki. In 1942, they described mathematics as a “a storehouse of abstract

forms” (Bourbaki 1950: 231); forms which are also tools, whose abstract (i.e. context-free),

object-like definition warrant general applicability: “ The “structures” are tools for the

mathematician. (…) One could say that the axiomatic method is nothing but the “Taylor

system” for mathematics” (Bourbaki 1950: 227). The arguments as to why it should be done,

and what the epistemic gains result (economy of thought, insight into formal analogies,

uniform treatment of seemingly different problems etc.) are quite clear; but no clue is given as

to how it is done. In particular, Bourbaki stress the fact that the list of important structures is

not closed, and that invention of structures accounts for numerous recent breakthroughs

(Bourbaki 1950: 230). They also emphasise the fact that the axiomatic method is at its best

when it succeeds in showing that some structure plays an important part in a field where, a

priori, it seems it played none (Bourbaki 1950: 228). Yet as to how these breakthroughs were

made, these new structures invented and these unexpected structures identified in more

classical settings, Bourbaki give no clue; or rather, they leave it to intuition: “more than ever

does intuition dominate in the genesis of discoveries.” (Bourbaki 1950: 248) !

Though Bourbaki’s 1942 assessment of the axiomatic method differs completely from that

of Weyl’s 1932 talk, L’architecture des mathématiques really makes it all look like the

“magic key” which Weyl derided. The cohomology theory of analytic sheaves on Stein



spaces, which Cartan and Serre presented in their 1953 conference talks on global problems in

the theory of functions of several complex variables, seems all the more magical for its

combination of two features: an extraordinary efficiency, and an extraordinary coherence. The

list of elements is impressive: list of target problems, axiomatic definition of the sheaf

structure, cohomology groups, exact sequences (short and long, of sheaves and of groups),

coherence results, sections of a projection map between a total space and a base space, left

exact but not right-exact functors, quotient sheaves, fine sheaves, fine resolutions, Čech

cohomology, convexity properties …; all the elements appear as necessary and interconnected

parts of an indivisible whole. The links are so tight that the very idea of a genesis of the

theory is puzzling.

The context for the formulation of this theory differs significantly from that of Cartan’s

1940 theory of ideals of holomorphic functions; so is the part played by the Cousin problems.

The stages in the perfecting of the cohomological tool have been recounted elsewhere, so we

strove for a different kind of picture: one of piecemeal tool-making and unexpected

efficiency. Between 1944 and 1950, two research lines evolved with no specific intersection:

the “global theory of modules of holomorphic functions” one the one hand, for which the

main (thorny) coherence problems took some time solving, and an extension of the local part

of the theory in purely algebraic settings was contemplated (replacing C by complete,

sometimes algebraically closed, valued fields); the cohomology of “faisceaux”, on the other

hand, at the intersection of topology and axiomatic cohomology. Though local coefficients

and faisceaux had been introduced by Steenrod and Leray with specific targets problems in

mind, it can be argued that in the hands of Cartan, sheaf cohomology was partly perfected,

simplified and streamlined for the sake of perfecting, simplifying and streamlining, in

consistence with the epistemic values promoted by Bourbaki; tapping, also, on know-how in

the design of structures accumulated within Bourbaki (Weil, Ehresmann, Dieudonné) and

bourbakian circles (Leray, de Rham, Eilenberg). Concepts, axiom schemes for structures,

axiom schemes for cohomology theories, tools and mottoes circulated across blurred

disciplinary boundaries. We mentioned the well-known parts played by fibre-bundle theory –

with its notions of total space, its focus on the question of section prolongation – and general

cohomology –  with the parallel between sheaf cohomology and group cohomology, the focus

on the question of non-exactness of additive functors etc. We also used the example of

partitions of unity, to show that a tool and mottoes (such as: pass from local to global) could,

temporarily, be seen as two sides of the same coin, and circulate through various theories:



partitions of unity and the sheaf-flavoured setting-out of Schwartz’s theory of distribution in

1951; a central part played by fine resolutions in the early years of sheaf cohomology.

Streamlining indeed, but bricolage as well, with both a lateral circulation of epistemic

elements (tools, mottoes, site techniques, problem laying-out schemes etc.) across disciplinary

boundaries, and replacement of functionally equivalent elements at various stages of the

theory: the definition of sheaf structures as total spaces (espace étalé) would later be replaced

by a more category-theoretic formulation; fine resolutions would be replaced by other, more

general types of resolutions (be they, injective, projective, flabby etc.); the 1950 definition of

coherence is not that of 1944 any more etc. 142

The Cousin problems were not target problems in the 1945-1950 development of sheaf

cohomology, and Cartan’s 1952 theorem A is merely a rewording in the language of sheaves

of the main result of the research line he initiated in 1940. Yet it turned out, unexpectedly,

that the proof methods used in that context could also prove the cohomological triviality of

coherent analytic sheaves on Stein manifolds (theorem B). The Cousin problems played a part

in the merger of two research lines, as Serre’s 1952 letters to Cartan clearly show. This new

change of setting affected the Cousin problems in manifold ways. Among other things, they

meant a return to the original functional Cousin problems, as opposed to Cartan’s 1940 ideal

problems; a return that Weil had anticipated in the context of fibre-bundles. At a deeper level,

new structural elements had to be injected into the 10-year-old “modules of holomorphic

functions” structure to make it fit into the cohomological machinery: until then, oddly enough,

neither homomorphisms nor quotients played any part in that research line. This led to the

reformulation of Cousin data as sections of a quotient sheaf. The merger of the research lines

eventually led to exchanges of conceptual elements in the other direction just as well. In

particular, the fact that a change of domains entails a change of base rings had been a core

element of the “modules of holomorphic functions” programme, whereas changes of base

rings played no part in Cartan’s 1950/51 topological sheaf cohomology. Later in the 1950s,

this feature would be fundamental for the rewriting of abstract algebraic geometry in the

framework of sheaf cohomology.
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