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SOURCE BOOKS IN THE HISTORY
OF THE SCIENCES

General Editor's Preface

THIS series of Source Books aims to present the most significant

passages from the works of the most important contributors

to the major sciences during the last three or four centuries.

So much material has accumulated that a demand for selected

sources has arisen in several fields. Source books in philosophy

have been in use for nearly a quarter of a century, and history,

economics, ethics, and sociology utilize carefully selected source

material. Recently, too, such works have appeared in the fields

of psychology and eugenics. It is the purpose of this series, there-

fore, to deal in a similar way with the leading physical and biologi-

cal sciences.

The general plan is for each volume to present a treatment of a

particular science with as much finality of scholarship as possible

from the Renaissance to the end of the nineteenth century. In

all, it is expected that the series will consist of eight or ten vol-

umes, which will appear as rapidly as may be consistent with

sound scholarship.

In June, 1924, the General Editor began to organize the follow-

ing Advisory Board:
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VIII EDITOR'S PREFACE

Each of the scientists on this board, in addition to acting in a

general advisory capacity, is chairman of a committee of four or

five men, whose business it is to make a survey of their special

field and to determine the number of volumes required and the

contents of eacli volume.

In December, 1925, the General Editor presented the project to

the Eastern Division of the American Philosophical Association.

After some discussion by the Executive Committee, it was

approved and the philosophers of the board, with the General

Editor as chairman, were appointed a committee to have charge

of it. In November, 1927, the Carnegie Corporation of New York

granted $10,000 to the American Philosophical Association as a

revolving fund to help finance the series. In December, 1927,

the American Association for the Advancement of Science approved

the project, and appointed the General Editor and Professors

Edwin G. Conklin and Harlow Shapley a committee to represent

that Association in cooperation with the Advisory Board. In

February, 1928, the History of Science Society officially endorsed

the enterprise. Endorsements have also been given by the Ameri-

can Anthropological Association, the Mathematical Association of

America, the American Mathematical Society, and the American

Astronomical Society w'ithin their respective fields.

The General Editor wishes to thank the members of the Advisory

Board for their assistance in launching this undertaking; Dr. J.

McKeen Cattell for helpful advice in the early days of the project

and later; Dr. William S. Learned for many valuable suggestions;

the several societies and associations that have given their endorse-

ments; and the Carnegie Corporation for the necessary initial

financial assistance.

Gregory D. Walcott.
Long Island University,

Brooklyn, N. Y.

December, 1928.



A SOURCE BOOK IN MATHEMATICS

Author^s Preface

The purpose of a source book is to supply teachers and students

with a selection of excerpts from the works of the makers of the

subject considered. The purpose of supplying such excerpts is

to stimulate the study of the various branches of this subject—in

the present case, the subject of mathematics. By knowing the

beginnings of these branches, the reader is encouraged to follow

the growth of the science, to see how it has developed, to appre-

ciate more clearly its present status, and thus to see its future

possibilities.

It need hardly be said that the preparation of a source book

has many difficulties. In this particular case, one of these lies

in the fact that the general plan allows for no sources before the

advent of printing or after the close of the nineteenth century.

On the one hand, this eliminates most of mathematics before the

invention of the calculus and modern geometry; while on the

other hand, it excludes all recent activities in this field. The
latter fact is not of great consequence for the large majority of

readers, but the former is more serious for all who seek the sources

of elementary mathematics. It is to be hoped that the success

of the series will permit of a volume devoted to this important

phase of the development of the science.

In the selection of material in the four and a half centuries

closing with the year 1900, it is desirable to touch upon a wide

range of interests. In no other way can any source book be made
to meet the needs, the interests, and the tastes of a wide range of

readers. To make selections from the field, however, is to neglect

many more sources than can possibly be selected. It would be

an easy thing for anyone to name a hundred excerpts that he

would wish to see, and to eliminate selections in which he has no
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special interest. Some may naturally seek for more light on our

symbols, but Professor Cajori's recent work furnishes this with a

Siitisfactory approach to completeness. Others may wish for a

worthy treatment of algebraic equations, but Matthiessen's

Grundziige contains such a wealth of material as to render the

undertaking unnecessary. The extensive field of number theory

will appeal to many readers, but the monumental work of Professor

Dickson, while not a source book in the ordinary sense of the

term, satisfies most of the needs in this respect. Consideration

must always be given to the demands of readers, and naturally

these demands change as the literature of the history of mathe-

matics becomes more extensive. Furthermore, the possibility

of finding source material that is stated succinctly enough for

purposes of quotation has to be considered, and also that of finding

material that is not so ultra-technical as to serve no useful purpose

for any considerable number of readers. Such are a few of the

many difficulties which will naturally occur to everyone and

which will explain some of the reasons which compel all source

books to be matters of legitimate compromise.

Although no single department of "the science venerable" can

or should be distinct from any other, and although the general

trend is strongly in the direction of unity of both purpose and

method, it will still serve to assist the reader if his attention is

called to the rough classification set forth in the Contents.

The selections in the field of Number vary in content from the

first steps in printed arithmetic, through the development of a

few selected number systems, to the early phases of number

theory. It seems proper, also, to consider the mechanics of com-

putation in the early stages of the subject, extending the topic to

include even as late a theory as nomography. There remains,

of course, a large field that is untouched, but this is a necessary

condition in each branch.

The field of Algebra is arbitrarily bounded. Part of the articles

classified under Number might have been included here, but such

questions of classification are of little moment in a work of this

nature. In general the articles relate to equations, symbolism, and
series, and include such topics as imaginary roots, the early

methods of solving the cubic and biquadratic algebraic equations

and numerical equations of higher degree, and the Fundamental

Theorem of Algebra. Trigonometry, which is partly algebraic,

has been considered briefly under Geometry. Probability, which
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is even more algebraic, is treated by itself, and is given somewhat
more space than would have been allowed were it not for the

present interest in the subject in connection with statistics.

The field of Geometry is naturally concerned chiefly with the

rise of the modern branches. The amount of available material

is such that in some cases merely a single important theorem or

statement of purpose has been all that could be included. The
topics range from the contributions of such sixteenth-century

writers as Fermat, Desargues, Pascal, and Descartes, to a few

of those who, in the nineteenth century, revived the study of the

subject and developed various forms of modern geometry.

The majority of the selections thus far mentioned have been

as non-technical as possible. In the field of Probability, however,

it has been found necessary to take a step beyond the elementary

bounds if the selections are to serve the purposes of those who
have a special interest in the subject.

The fields of the Calculus, Function Theory, Quaternions, and

the general range of Mathematics belong to a region so extensive

as to permit of relatively limited attention. It is essential that

certain early sources of the Calculus should be considered, and

that some attention should be given to such important advances

as relate to the commutative law in Quaternions and Ausdehnungs-

lehre, but most readers in such special branches as are now the

subject of research in our universities will have at hand the material

relating to the origins of their particular subjects. The limits

of this work would not, in any case, permit of an extensive offering

of extracts from such sources.

It should be stated that all the translations in this work have

been contributed without other reward than the satisfaction of

assisting students and teachers in knowing the sources of certain

phases of mathematics. Like the editor and the advisory com-

mittee, those who have prepared the articles have given their

services gratuitously. Special mention should, however, be

made of the unusual interest taken by a few who have devoted

much time to assisting the editor and committee in the somewhat

difficult labor of securing and assembling the material. Those

to whom they are particularly indebted for assistance beyond the

preparation of special articles are Professor Lao G. Simons, head of

the department of mathematics in Hunter College, Professor

Jekuthiel Ginsburg, of the Yeshiva College, Professor Vera

Sanford of Western Reserve University, and Professor Helen M.
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Walker, of Teachers College, Columbia University. To Professor

Sanford special thanks are due for her generous sacrifice of time

and effort in the reading of the proofs during the editor's prolonged

absence abroad.

The advisory committee, consisting of Professors Raymond
Clare Archibald of Brown University, Professor Florian Cajori of

the University of California, and Professor Leonard Eugene

Dickson of the University of Chicago, have all contributed of

their time and knowledge in the selection of topics and in the

securing of competent translators. Without their aid the labor

of preparing this work would have been too great a burden to

have been assumed by the editor.

In the text and the accompanying notes, the remarks of the

translators, elucidating the text or supplying historical notes of

value to the reader, are inclosed in brackets
[ ]. To these con-

tributors, also, are due slight variations in symbolism and in the

spelling of proper names, it being felt that they should give the

final decision in such relatively unimportant matters.

David Eugene Smith.
New York,

September, 1929.



Contents

Page
General Editor's Preface vii

Author's Preface ix

I. THE FIELD OF NUMBER

The First Printed Arithmetic. Treviso, 1478 1

Selection translaced from the Italian by David Eugene Smith

Robert Recorde on "The Declaration of the Profit of Arith-

meticke" 13

Selected from The Ground of Artes, by David Eugene Smith

Stevin on Decimal Fractions 20

Translated from the French by Vera Sanford

Dedekind on Irrational Numbers 35

Translated from the German by Wooster Woodruff Beman. Selec-

tion made and edited by Vera Sanford

John Wallis on Imaginary Numbers 46

Selected and edited by David Eugene Smith

Wessel on Complex Numbers 55

Translated from the Danish by Martin A. Nordgaard
Pascal on the Arithmetic Triangle 67

Translated from the French by Anna Savitsky

Bombelli and Cataldi on Continued Fractions 80

Translated from the Italian by Vera Sanford

Bernoulli on "Bernoulli Numbers" 85

Translated from the Latin by Jekuthiel Ginsburg

EuLER ON Every Integer as a Sum of Four Squares 91

Translated from the Latin by E. T. Bell

EuLER ON THE UsE OF € TO REPRESENT 2.718- • • 95

Selections translated from the Latin by Florian Cajori

HeRMITE on THE TRANSCENDENCE OF C 99

Translated from the French by Laura Guggenbiihl

Gauss on the Congruence of Numbers 107

Translated from the Latin by Ralph G. Archibald

Gauss on the Third Proof of the Law of Quadratic Reciprocity 112

Translated from the Latin by D. H. Lehmer
KuMMER ON Ideal Numbers 119

Translated from the German by Thomas Freeman Cope
Chebyshev (Tchebycheff) on the Totality of Primes 127

Translated from the French by J. D. Tamarkin
Napier on the Table of Logarithms 149

Selected and edited by W. D. Cairns

xiii



XIV CONTENTS

Page
Delamain on the Slide Rule 156

Edited by Florian Cajori

OUCHTRED ON THE SlIDE RuLE 160

Edited by Florian Cajori

Pascal on His Calculating Machine 165

Translated from the French by L. Leiand Locke

Leibniz on His Calculating Machine 173

Translated from the Latin by Mark Kormes
Napier on the Napier Rods 182

Translated from the Latin by Jekuthiel Ginsburg

Galileo Galilei on the Proportional or Sector Compasses ... 186

Translated from the Italian by David Eugene Smith

D'Oc.^GNE on No.mogr-^phy 192

Translated from the French by Ne\Tn C. Fisk

n. THE FIELD OF ALGEBRA

Carda.n on I.maginary Roots 201

Translated from the Latin by Vera Sanford

Cardan on the Cubic Equation 203

Translated from the Latin by R. B. McCIenon
Ferrari-Cardan on the Biquadr.\tic Equatio.n 207

Translated from the Latin by R. B. McCIenon, with additional

notes by Jekuthiel Ginsburg

Fermat on the Equation a:" + y" = z" 213

Translated from the French by Vera Sanford

Fermat on the So-called Pell Equation 214

Translated from the Latin by Edward E. Whitford

John Wallis on General Expo-nen-ts 217

Translated from the Latin by Eva M. Sanford

Wallis ant) Newton on the Bino.mial Theorem for Fractional and
Negative Exponen-ts 219

Selection from Wallis's Algebra, by David Eugene Smith

Newton on the Binomial Theorem for Fractional and Negative

Exponents 224

Translated from the Latin by Eva M. Sanford

Leibniz ant> the Bernoullis o.n the Polynomial Theorem .... 229

Translated from the Latin by Jekuthiel Ginsburg

FIoRNER ON Numerical Higher Equations 232

Selected and edited by Margaret iMcGuire

RoLLE ON the Location of Roots 253

Translated from the French by Florian Cajori

Abel on the Quintic Equation 261

Translated from the French by W. H. Langdon, with notes by

O^'stein Ore

Leibniz on Deter.mina.nts 267

Translated from the Latin by Thomas Freeman Cope
Bernoulli. Verses on Intintte Series 271

Translated from the Latin bv Helen M. Walker



CONTENTS XV

Paob
Bernoulli on the Theory of Combinations 272

Translated from the Latin by Mary M. Taylor

Galois on Groups and Equations 278

Translated from the French by Louis Weisner

Abel's Theorem on the Continuity of Functions Defined by Power
Series 286

Translated from the German by Albert A, Bennett

Gauss on the Fundamental Theorem of Algebra 292

Translated from the Latin by C. Raymond Adams

IIL THE FIELD OF GEOMETRY
Desargues om Perspective Triangles 307

Translated from the French by Lao G. Simons

Desargues on the 4-rayed Pencil 311

Translated from the French by Vera Sanford

Poncelet on Projective Geometry 315

Translated from the French by Vera Sanford

Peaucellier's Cell 324

Translated from the French by Jekuthiel Ginsburg

Pascal, "Essay Pour Les Coniques" 326

Translated from the French by Frances Marguerite Clarke

Brianchon's Theorem 331

Translated from the French by Nathan Altshiller-Court

Brianchon and Poncelet on the Nine-point Circle Theorem . . 337

Translated from the French by Morris Miller Slotnick

Feuerbach on the Theorem Which Bears His Name 339

Translated from the German by Roger A. Johnson

The First Use of tt for the Circle Ratio 346

Selection made by David Eugene Smith from the original work

Gauss on the Division of a Circle into n Equal Parts 348

Translated from the Latin by J. S. Turner

Saccheri on Non-Euclidean Geometry 351

Translated from the Latin by Henry P. Manning
LoBACHEVSKY ON NoN-EuCLlDEAN GEOMETRY 360

Translated from the French by Henry P. Manning
Bolyai ON NoN-EuCLiDEAN Geometry 371

Translated from the Latin by Henry P. Manning
Fermat on Anal\tic Geometry 389

Translated from the French by Joseph Scidlin

Descartes on Analytic Geometry 397

Translated from the French by David Eugene Smith and Marcia L.

Latham
Pohlke's Theorem 403

Translated from the German by Arnold Emch
Riemann on Surfaces ant) Analysis Situs 404

Translated from the German by James Singer

Riemann on the Hypotheses Which Lie at the Foundations of

Geometry 411

Translated from the German by Henry S. White



xvi CONTENTS

Page
MONGE ON THE PuRPOSE OF DESCRIPTIVE GeOMETRY 426

Translated from the French by Arnold Emch
Regiomontanus on the Law of Sines for Spherical Triangles . . 427

Translated from the Latin by Eva M. Sanford

Regiomontanus on the Relation of the Parts of a Triangle. , 432

Translated from the Latin by Vera Sanford

PiTiscus ON the Laws of Sines and Cosines 434

Translated from the Latin by Jekuthiel Ginsburg

PiTiscus on Burgi's Method of Trisecting an Arc 436

Translated from the Latin by Jekuthiel Ginsburg

De Moivre's Formula 440

Translated from the Latin and from the French by Raymond Clare

Archibald

Clavius on Prosthaphaeresis as Applied to Trigonometry. . . . 455

Translated from the Latin by Jekuthiel Ginsburg

Clavius on Prosthaphaeresis 459

Translated from the Latin by Jekuthiel Ginsburg

Gauss on Conformal Representation 463

Translated from the German by Herbert P. Evans

Steiner on Quadratic Transformation between Two Spaces . . . 476

Translated from the German by Arnold Emch
Cremona on Geometric Transformations of Plane Figures . . . 477

Translated from the Italian by E. Amelotti

Lie's Memoir on a Class of Geometric Transformations .... 485

Translated from the Norwegian by Martin A. Nordgaard

MoBius, Cayley, Cauchy, Sylvester, and Clifford on Geometry of

Four or More Dimensions 524

Note by Henry P. Manning
MoBius ON Higher Space 525

Translated from the German by Henry P. Manning

Cayley on Higher Space 527

Selected by Henry P. Manning

Cauchy on Higher Space 530

Translated from the French by Henry P. Manning

Sylvester on Higher Space 532

Selected by Henry P. Manning
Cufford on Higher Space 540

Selected by Henry P. Manning

IV. THE FIELD OF PROBABILITY

Fermat and Pascal on Probability 546

Translated from the French by Vera Sanford

De Moivre on the Law of Normal Probability 566

Selected and edited by Helen M. Walker

Legendre on Least Squares 576

Translated from the French by Henry A. Ruger and Helen M.

Walker

Chebyshev (Tchebycheff) on Mean Values 580

Translated from the French by Helen M. Walker



CONTENTS xvii

Page
Laplace on the Probability of Errors in the Mean Results of a

Great Number OF Observations, Etc 588

Translated from the French by Julian L. C. A. Gys

V. FIELD OF THE CALCULUS, FUNCTIONS, QUATERNIONS

Cavalieri on an Approach to the Calculus 605

Translated from the Latin by Evelyn Walker

Fermat ON Maxima AND Minima 610

Translated from the French by Vera Sanford

Newton on Fluxions 613

Translated from the Latin by Evelyn Walker

Leibniz on THE Calculus 619^
Translated from the Latin by Evelyn Walker ^

Berkeley's "Analyst" 627

Selected and edited by Florian Cajori

Cauchy on Derivatives and Differentials 635

Translated from the French by Evelyn Walker

EuLER ON Differential Equations OF THE Second Order 638

Translated from the Latin by Florian Cajori

Bernoulli on the Brachistochrone Problem 644

Translated from the Latin by Lincoln La Paz

Abel ON Integral Equations 656

Translated from the German by J. D. Tamarkin
Bessel ON His Functions 663

Translated from the German by H. Bateman
M6BIUS ON THE Barycentric Calculus 670

Translated from the German by J. P. Kormes
Hamilton on Quaternions 677

Selected edited by Marguerite D. Darkow
Grassmann on Ausdehnungslehre 684

Translated from the German by Mark Kormes

Index 697





THE TREVISO ARITHMETIC

although the results are the same. Now not to speak at too great

length I say in brief, but sufficiently for the purposes of a Practica,

that there are three methods of multiplication, viz., by the tables,

cross multiplication, and the chess-board plan. These three

methods I will explain to you as briefly as I am able. But before

I give you a rule or any method, it is necessary that you commit

to memory the following state-
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ments, without which no one

can understand all of this oper-

ation of multiplication^ . .

I have now given you to learn

by heart all the statements

needed in the Practica of arith-

metic, without which no one

is able to master the Art. We
should not complain, however,

at having to learn these things

by heart in order to acquire

readiness; for I assure you that

these things which I have set

forth are necessary to any one

who would be proficient in this

art, and no one can get along

with less. Those facts which

are to be learned besides these

are valuable, but they are not

necessary.

Having learned by heart all

of the above facts, the pupil

may with zeal begin to multiply by the table. This operation arises

when the multiplier is a simple number, and the number multiplied

has at least two figures, but as many more as we wish. And that

we may more easily understand this operation we shall call the

first figure toward the right, units; the second toward the left,

tens, and the third shall be called hundreds. This being under-

stood, attend to the rule of working by the table, which is as

follows: First multiply together the units of the multiplier and

' [The author now gives the multiplication table, omitting all duplications

like 3X2 after 2X3 has been given, but extending for "those who are of

scholarly tastes" the table to include multiples of 12, 20, 24, 32 and 36, as

needed in the monetary systems used by merchants of the time.]

Bomma*

l.TTToZ

\o/\o /\0/\
9\/<*\ /s\/4r \i

I'j /VTA I A

y ? 4

UVtNl i\l4U

IoNJo\|o\fi(i

|t\lo\[t\|W t
* 9 5



KUMMER

On Ideal Numbers

(Translated from the German by Dr. Thomas Freeman Cope, National

Research Fellow in Mathematics, Harvard University, Cambridge, Mass.)

Ernst Edward Kummer' (1810-1893), who was professor of mathematics in

the University of Breslau from 1842 till 1855 and then in the University of

Berlin until 1884, made valuable contributions in several branches of mathe-

matics. Among the topics he studied may be mentioned the theory of the

hypergeometric (Gaussian) series, the Riccati equation, the question of the

convergency of series, tlie theory of complex numbers, and cubic and biquad-

ratic residues. He was the creator of ideal prime factors ofcomplex numbers and

studied intensively surfaces of the fourth order and, in particular, the surfaces

which bear his name.

In the following paper which appears in the original in Crelle's Journal filr

die reine und angeivandte Matbematik (Vol. 35, pp. 319-326, 1847), Kummer
introduces the notion of ideal prime factors of complex numbers, by means of

which he was able to restore unique factorization in a field where the funda-

mental theorem of arithmetic does not hold. Although Rummer's theory has

been largely supplanted by the simpler and more general theory of Dedekind,

yet the ideas he introduced were of such importance that no less an authority

than Professor E. T. Bell is responsible for the statement that^ " Kummer's
introduction of ideals into arithmetic was beyond all dispute one of the greatest

mathematical advances of the nineteenth century." For the position of

Kummer's theory in the theory of numbers, the reader is referred to the

article by Professor Bell from which the above quotation is taken.

On the Theory Of Complex Numbers

(By Professor Kummer of Breslau.)

(Abstract of the Beiicbten der Konigl. Akad. der Wiss. zu Berlin, March 1845.)

I have succeeded in completing and in simplifying the theory of

those complex numbers which are formed from the higher roots

of unity and which, as is well known, play an important role in

cyclotomy and in the study of power residues and of forms of

higher degree; this I have done through the introduction of a

peculiar kind of imaginary divisors which I call ideal complex

' For a short biographical sketch, see D. E. Smith, History of Matbematics, Vol. I, pp.

507-508, Boston, 1923.

- American Mathematical Monthly, Vol. 34, pp. 66.

119
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numbers and concerning which I take the liberty of making a few

remarks.

If a is an imaginary root of the equation a^ = 1, X a prime num-
ber, and a, Oi, 02, etc. whole numbers, then /(a) = a + oia + 020:^

+ . . • + a\^ia^~^ is a complex whole number. Such a complex

number can either be broken up into factors of the same kind or

such a decomposition is not possible. In the first case, the

number is a composite number; in the second case, it has hitherto

been called a complex prime number. I have observed, however,

that, even though /(a) cannot in any way be broken up into com-
plex factors, it still does not possess the true nature of a complex

prime number, for, quite commonly, it lacks the first and most

important property of prime numbers; namely, that the product

of two prime numbers is divisible by no other prime numbers.

Rather, such numbers /(a), even if they are not capable of decom-

position into complex factors, have nevertheless the nature of

composite numbers; the factors in this case are, however, not actual

but ideal complex numbers. For the introduction of such ideal

complex numbers, there is the same, simple, basal motive as for

the introduction of imaginary formulas into algebra and analysis;

namely, the decomposition of integral rational functions into their

simplest factors, the linear. It was, moreover, such a desidera-

tum which prompted Gauss, in his researches on biquadratic

residues (for all such prime factors of the form 4m + 1 exhibit the

nature of composite numbers), to introduce for the first time com-

plex numbers of the form a -f b-\/—\.

In order to secure a sound definition of the true (usually ideal)

prime factors of complex numbers, it was necessary to use the

properties of prime factors of complex numbers which hold in

every case and which are entirely independent of the contingency

of whether or not actual decomposition takes place: just as in

geometry, if it is a question of the common chords of two circles

even though the circles do not intersect, one seeks an actual defini-

tion of these ideal common chords which shall hold for all positions

of the circles. There are several such permanent properties of

complex numbers which could be used as definitions of ideal prime

factors and which would always lead to essentially the same result;

of these, I have chosen one as the simplest and the most general.

If p is a prime number of the form mX + 1, then it can be repre-

sented, in many cases, as the product of the following X — 1

complex factors: p = /(a)-/(a^)-/(a^). . ./(a^"'); when, however, a
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decomposition into actual complex prime factors is not possible,

let ideals make their appearance in order to bring this about. If

f(a) is an actual complex number and a prime factor of p, it has

the property that, if instead of the root of the equation a^ = 1 a

definite root of the congruence ^^ = 1, mod. p, is substituted, then

/(^) = 0, mod. p. Hence too if the prime factor /(a) is contained

in a complex number 4>(a), it is true that $(^) = 0, mod. p; and

conversely, if $(^) = 0, mod. p, and p is factorable into X — 1

complex prime factors, then $(a) contains the prime factor /(a).

Now the property $(^) = 0, mod. p, is such that it does not depend

in any way on the factorability of the number p into prime factors;

it can accordingly be used as a definition, since it is agreed that the

complex number $(a) shall contain the ideal prime factor of p
which belongs to a = ^, if $(^) = 0, mod. p. Each of the X — 1

complex prime factors of p is thus replaced by a congruence rela-

tion. This suffices to show that complex prime factors, whether

they be actual or merely ideal, give to complex numbers the same

definite character. In the process given here, however, we do

not use the congruence relations as the definitions of ideal prime

factors because they would not be sufficient to represent several

equal ideal prime factors of a complex number, and because, being

too restrictive, they would yield only ideal prime factors of the

real prime numbers of the form mX — 1.

Every prime factor of a complex number is also a prime factor

of every real prime number g, and the nature of the ideal prime

factors is, in particular, dependent on the exponent to which q

belongs for the modulus X. Let this exponent be/, so thatg^ = 1,

mod. X, and X — 1 = e-J. Such a prime number q can never be

broken up into more than e complex prime factors which, if this

decomposition can actually be carried out, are represented as

hnear functions of the e periods of each set of / terms. These

periods of the roots of the equation a^ = 1, I denote by rj, t/i, 772,

. . .r)e-i; and indeed in such an order that each goes over into the

following one whenever a is transformed into a'>', where 7 is a

primitive root of X. As is well known, the periods are the e roots

of an equation of the eth degree; and this equation, considered

as a congruence for the modulus q, has always e real congruential

roots which I denote by u, Ui, U2, . . .Ue_i and take in an order

corresponding to that of the periods, for which, besides the con-

gruence of the eth degree, still other easily found congruences

may be used. If now the complex number c'77 + c/171 + Ca'Tjs 4-
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. . . + c'e~iVe-u constructed out of periods, is denoted shortly by
^{rj), then among the prime numbers q which belong to the expo-

nent /, there are always such that can be brought into the form

q = ^{ri)^r]i)Hm) -Hve-i),

in which, moreover, the e factors never admit a further decomposi-

tion. If one replaces the periods by the congruential roots

corresponding to them, where a period can arbitrarily be designated

to correspond to a definite congruential root, then one of the e

prime factors always becomes congruent to zero for the modulus

q. Now if any complex number J{a) contains the prime factor

^(v), it will always have the property, for 77 = u^t, tji = Uk+u

772 = Uk+2, etc., of becoming congruent to zero for the modulus q'

This property (which imphes precisely / distinct congruence

relations, the development of which would lead too far) is a

permanent one even for those prime numbers q which do not

admit an actual decomposition into e complex prime factors. It

could therefore be used as a definition of complex prime factors;

it would, however, have the defect of not being able to express

the equal ideal prime factors of a complex number.

The definition of ideal complex prime factors which I have

chosen and which is essentially the same as the one described but

is simpler and more general, rests on the fact that, as I prove

separately, one can always find a complex number ^(77), constructed

out of periods, which is of such a nature that 'A ('?)'/' (171) "A ('72). .

.

yp{rie-i) (this product being a whole number) is divisible by q but

not by q^. This complex number \l/(rj) has always the above-

mentioned property, namely, that it is congruent to zero, modulo

q, if for the periods are substituted the corresponding congruential

roots, and therefore \p(r]) = 0, mod. g, for 77 = u, 771 = wi, 772 = M2,

etc. I now set ^PiviJ^iv^) • • .\J/(ve~i) = "^(v) and define ideal prime

numbers in the following manner:

—

If /(a) has the property that the product /(a). ^(77r) is divisible

by q, this shall be expressed as follows: J(a) contains the ideal

prime factor of q which belongs to u = 77^. Furthermore, if f{a)

has the property that J{(x).{'^(r]r)Y is divisible by g** but

/(a) (^(77,))"+^ is not divisible by g^+S this shall be described

thus: /(a) contains the ideal prime factor of q which belongs to

u = 77r, exactly n times.

It would lead too far if I should develop here the connection

and the agreement of this definition with those given by congru-

ence relations as described above; I simply remark that the
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relation; j{ot)'^{r)r) divisible by q, is completely equivalent to/
distinct congruence relations, and that the relation; /(a) (^(77,))"

divisible by g", can always be entirely replaced by u-j congruence

relations. The whole theory of ideal complex numbers which I

have already perfected and of which I here announce the principal

theorems, is a justification of the definition given as well as of the

nomenclature adopted. The principal theorems are the following:

The product of two or more complex numbers has exactly the

same ideal prime factors as the factors taken together.

If a complex number (which is a product of factors) contains

all the e prime factors of q, it is also divisible by q itself; if, however,

it does not contain some one of these 3 ideal prime factors, it is

not divisible by q.

If a complex number (in the form of a product) contains all the

e ideal prime factors ot q and, indeed, each at least fx times, it is

divisible by g^.

If /(a) contains exactly m ideal prime factors of g, which may all

be different, or partly or wholly alike, then the norm
A//(«) = J{ot)f{a^) . . ./(a^~^) contains exactly the factor q"'^.

Every complex number contains only a finite, determinate

number of ideal prime factors.

Two complex numbers which have exactly the same ideal prime

factors differ only by a complex unit which may enter as a factor.

A complex number is divisible by another if all the ideal prime

factors of the divisor are contained in the dividend; and the

quotient contains precisely the excess of the ideal prime factors

of the dividend over those of the divisor.

From these theorems it follows that computation with complex
numbers becomes, by the introduction of ideal prime factors,

entirely the same as computation with integers and their real

integral prime factors. Consequently, the grounds for the

complaint which I voiced in the Breslauer Programm zur Jubelfeier

der Universitdt Konigsherg S. 18, are removed:

—

It seems a great pity that this quality of real numbers, namely,

that they can be resolved into prime factors which for the same number
are always the same, is not shared by complex numbers; if now this

desirable property were part oj a complete doctrine, the effecting oj

which is CLS yet beset with great difficulties, the matter could easily be

resolved and brought to a successful conclusion. Etc. One sees

therefore that ideal prime factors disclose the inner nature of

complex numbers, make them transparent, as it were, and show
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their inner crystalline structure. If, in particular, a complex

number is given merely in the form a -\- aia + 020^ + • • • +
a\-ia^~^, little can be asserted about it until one has determined,

by means of its ideal prime factors (which in such a case can always

be found by direct methods), its simplest qualitative properties to

serve as the basis of all further arithmetical investigations.

Ideal factors of complex numbers arise, as has been shown, as

factors of actual complex numbers: hence ideal prime factors

multiplied with others suitably chosen must always give actual

complex numbers for products. This question of the combination

of ideal factors to obtain actual complex numbers is, as I shall

show as a consequence of the results which I have already found,

of the greatest interest, because it stands in an intimate relation-

ship to the most important sections of number theory. The two

most important results relative to this question are the following:

There always exists a finite, determinate number of ideal

complex multipliers which are necessary and sufficient to reduce

all possible ideal complex numbers to actual complex numbers.^

Every ideal complex number has the property that a definite

integral power of it will give an actual complex number.

I consider now some more detailed developments from these two

theorems. Two ideal complex numbers which, w^hen muItipHed

by one and the same ideal number, form actual complex numbers,

I shall call equivalent or of the same class, because this investigation

of actual and ideal complex numbers is identical with the classifica-

tion of a certain set of forms of the X — 1st degree and in X — 1

variables; the principal results relative to this classification have

been found by Dirichlet but not yet pubfished so that I do not

know precisely whether or not his principle of classification

coincides with that resulting from the theory of complex numbers.

For example, the theory of a form of the second degree in two

variables with determinant, however, a prime number X, is closely

interwoven with these investigations, and our classification in this

case coincides with that of Gauss but not with that of Legendre.

The same considerations also throw great light upon Gauss's

classification of forms of the second degree and upon the true basis

for the diff"erentiation between Aequivalentia propria et impropria,^

1 A proof of this important theorem, although in far less generality and in an

entirely different form, is found in the dissertation : L. Kronecker, De unilati-

bus complexis, Berlin, 1845.

* [i. e., proper and improp>er equivalence.]



KUMMER 125

which, undeniably, has always an appearance of impropriety when

it presents itself in the Disquisitiones aritbmeticae. If, for exam-

ple, two forms such as ax^ + 2bxy + cy^ and ax^ — 2bxy +
cy^, or ax^ + 2bxy + cy^ and cx^ + 2bxy + ay^, are considered

as belonging to different classes, as is done in the above-mentioned

work, while in fact no essential difference between them is to be

found; and if on the other hand Gauss's classification must not-

withstanding be admitted to be one arising for the most part out

of the very nature of the question: then one is forced to consider

forms such as ax^ + 2hxy + cy"^ and ax^ — 2bxy + cy^ which

differ from each other in outward appearance only, as merely

representative of two new but essentially different concepts of

number theory. These however, are in reahty nothing more than

two different ideal prime factors which belong to one and the same
number. The entire theory of forms of the second degree in two
variables can be thought of as the theory of complex numbers of

the form x + yV -D and then leads necessarily to ideal complex

numbers of the same sort. The latter, however, classify them-

selves according to the ideal multipliers which are necessary and

sufficient to reduce them to actual complex numbers of the form

X + yy/D. Because of this agreement with the classification of

Gauss, ideal complex numbers thus constitute the true basis for it.

The general investigation of ideal complex numbers presents

the greatest analogy with the very difficult section by Gauss: De
compositione jorvxarum, and the principal results which Gauss

proved for quadratic forms, pp. 337 and following, hold true also

for the combination of general ideal complex numbers. Thus
there belongs to every class of ideal numbers another class which,

when multiphed by the first class, gives rise to actual complex

numbers (here the actual complex numbers are the analogue of

the Classis principalis).^ Likewise, there are classes which, when
multiplied by themselves, give for the result actual complex

numbers (the Classis principalis), and these classes are therefore

ancipites;^ in particular, the Classis principalis itself is always a

Classis anceps. If one takes an ideal complex number and raises

it to powers, then in accordance with the second of the foregoing

theorems, one will arrive at a power which is an actual complex

number; if b is the smallest number for which (/(a))^ is an actual

^ [Principal class.]

^ [Dual, or of a double nature.]
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complex number, then /(a), (/(q:))^ (/(a))^. . . (/(a))'' all belong to

different classes. It now may happen that, by a suitable choice

of /(a), these exhaust all existing classes: if such is not the case, it

is easy to prove that the number of classes is at least always a

multiple of h. I have not gone deeper yet into this domain of

complex numbers; in particular, I have not undertaken an investi-

gation of the exact number of classes because I have heard that

Dirichlet, using principles similar to those employed in his famous

treatise on quadratic forms, has already found this number. I

shall make only one additional remark about the character of

ideal complex numbers, namely, that by the second of the fore-

going theorems they can always be considered and represented as

definite roots of actual complex numbers, that is, they always take

the form v$(a;) where $(«) is an actual complex number and b

an integer.

Of the different applications which I have already made of this

theory of complex number, I shall refer only to the application to

cyclotomy to complete the results which I have already announced

in the above-mentioned Programm. If one sets

{a, x) = X -\- ax" + aV' + . . . + aP-^.v"""',

where a^ = 1, x^ = 1, p = m\ + 1, and g is a primitive root of

the prime number p, then it is well known that (a, x)^ is a complex

number independent of x and formed from the roots of the equa-

tion a^ = 1. In the Programm cited, I have found the following

expression for this number, under the assumption that p can be

resolved into X — 1 actual complex prime factors, one of which is

(a, x)^ = ±a''r'(a)-/'"K«')-rK«')- • .r^-'(a^-'),

where the power-exponents mi, m2, m^, etc. are so determined that

the general rn.K, positive, is less than X and k-mk = 1, mod. X.

Exactly the same simple expression holds in complete generality,

as can easily be proved, even when J(a) is not the actual but only

the ideal prime factor of p. In order, however, in the latter case,

to maintain the expression for (a, x)^ in the form for an actual

complex number, one need only represent the ideal J(a) as a root

of an actual complex number, or apply one of the methods

(although indirect) which serve to represent an actual complex

number whose ideal prime factors are given.
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On the Totality of Primes

{Translated Jrom the French by Professor J. D. Tamarkin, Brown University,

Providence, Rhode Island.)

Pafnuty Lvovich Chebyshev (Tchebycheff, Tcliebytcbeff) was born on May
14, 1821, and died on Nov. 26, 1894. He is one of the most prominent repre-

sentatives of the Russian mathematical school. He made numerous important

contributions to the theory of numbers, algebra, the theory of probabilities,

analysis, and applied mathematics. Among the most important of his papers

are the two memoirs of which portions are here translated:

1. "Sur la totalite des nombres premiers inferieurs k une limite donnee,"

Memoires presentes a l'Academic Imperiale des Sciences de St.-Petersbourg par

divers savants et lus dans ses assemblees. Vol. 6, pp. 141-157, 1851 (Lu le 24 Mai,

1848); Journal de Mathematiques pures et appliquees, (1) Vol. 17, pp. 341-365,

1852; Oeuvres, Vol. 1, pp. 29-48, 1899.

2. "Memoire sur les nombres premiers," ifcici.. Vol. 7, pp. 15-33, 1854 (lu le 9

Septembre, 1850), ibid., pp. 366-390, ibid., pp. 51-70.

These memoirs represent the first definite progress after Euclid in the

investigation of the function <^(x) which determines the totality of prime num-
bers less than the given limit x. The problem of finding an asymptotic

expression for 0(.v) for large values of x attracted the attention and efforts of

some of the most brilliant mathematicians such as Legendre, Gauss, Lejeune-

Dirichlet, and Riemann.

Gauss (1791, at the age of fourteen) was the first to suggest, in a purely

. X
empirical way, the asymptotic formula j

—— for <t>ix). {Werke, Vol. Xi,

p. 11, 1917.) Later on (1792-1793, 1849), he suggested another formula
/*x fix . X .

I ,
> of which , is the leading terra (Gauss's letter to Encke, 1849,

J2 log X log X & V

Werke, Vol. II, pp. 44:4-44:7, 1876). Legendre, being, of course, unaware

of Gauss's results, suggested another empirical formula xi „ (Essai

sur la tbeorie des nombres, 1st ed., pp. 18-19, 1798) and specified the con-

stants A and B as A = 1, B = —1.08366 in the second edition of the £5501

(pp. 394-395, 1808). Legendre's formula, which Abel quoted as "the most

marvelous in mathematics" (letter to Holmboe, Abel Memorial, 1902, Corre-

spondence, p. 5), is correct up to the leading term only. This fact was recog-

nized by Dirichlet ("Sur I'usage des series infinies dans la theorie des nombres,"

Crelle's Journal, Vol. 18, p. 272, 1838, in his remark written on the copy pre-

sented to Gauss. Cf. Dirichlet, Werke, Vol. 1, p. 372, 1889). In this note
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