PhD student, Laboratoire SPHERE - University Paris Cité
Contact : petimotei(at)gmail.com
Curriculum vitae
Thesis
Research Themes
Communication
Teaching
Cursus
THESIS
Title : Interactions entre mathématiques et histoire des mathématiques : approche historique et perspectives contemporaines appuyée sur le rapport d’Alexander Brill et Max Noether, Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit (1894).
Directors : Karine Chemla & Patrick Popescu-Pampu
Thesis project :
The aim of this thesis is to study the text of Alexander Brill and Max Noether, Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit published in 1894. This text is at the centre of questions from a group of historians, philosophers of mathematics and mathematicians with whom I will be working.
My work will consist of translating part of this work into English. I have chosen Section VI, which deals with the theory of singular points. In parallel to this translation, I will conduct an in-depth study of the mathematics used in this section by modernising the notations, statements and demonstrations. If it turns out that results are not yet proven, I will work on their demonstration.
Then, at the heart of this work, I will conduct a study of the history of mathematics written by mathematicians, which is the case with this text. Indeed, Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit proposes a historical approach to algebraic functions. It was composed in a context where the German mathematical society launched the production of synthetic reports on the different branches of mathematics. Brill and Noether give a treatment that has real historical depth to algebraic functions and their use in the study of algebraic curves and abelian integrals, a generalisation of elliptic integrals.
Thus, the questions that will drive the thesis are of the following type: What is the role of the history of mathematics for these German scientists who practice it in depth? First of all, how do they practice history? How does the synthesis of knowledge explain historical reflection, and how does historical reflection underlie the practice of synthesis? Finally, and most importantly, how does the work of these mathematicians in this area relate to their more purely mathematical research?
RESEARCH THEMES
- Algebraic function theory of the 19th century.
- German mathematical society of the late 19th century.
- Singularity theory
- History practices by mathematicians
COMMUNICATIONS
Presentations
- Georges-Henri Halphen’s approaches to the reduction of singularities, Mathématiques
19è–21è, histoire et philosophie Seminar, SPHERE Laboratory, 10 June 2024 - The resolution of singularities: a bit of history and the method by blow-ups, Réseau des Étudiants en Géométrie Algébrique Seminar, 15 May 2024
- Translation: A Phenomenon Inside and Outside of Language, Approches historiques, philosophiques et anthropologiques des nombres, de la mesure et de la mesurabilité Seminar, SPHERE Laboratory, 2 April 2024
- Answering Jeremy Gray’s "Algebra and/or geometry" conference, Histoire et philosophie des mathématiques Seminar, SPHERE Laboratory, 4 March 2024
- The reduction of singularities according to Max Noether and Georges-Henri Halphen: What did more geometric mean?, Research in Progress Conference, British Society for the History of Mathematics, 2 March 2024
- Round-table : Algebraic approaches of curves, Histoire et philosophie des mathématiques Seminar, SPHERE Laboratory, 18 December 2023
- Presentation of part of the translation of Section VI of the text by Alexander Brill and Max Noether: Die Entwicklung der Theorie der algebraischen Functionen in älterer und neuerer Zeit (1894), The Brill-Noether report on the theory of algebraic functions (1894): translation and analysis, CIRM, 30 October to 3 November 2023
- Halphen more geometric than Noether, 33nd Novembertagung, 16 September 2023
- The reduction of singularities of a plane algebraic curve by correspondence with Georges-Henri Halphen, Mathématiques 19è–21è, histoire et philosophie Seminar, SPHERE Laboratory, 16 May 2023
- Notices on life and work: the case of G.-H. Halphen, DISc Seminar, SPHERE Laboratory, 26 April 2023
- Singularity theory and history through the eyes of mathematicians, Journée doctorale ED 623, Université Paris Cité, 4 April 2023
- A text by Brill & Noether, mathematics and a method, DISc Seminar, SPHERE Laboratory, 12 October 2022
TEACHING
2023/2024
- TDs in L1 - Mathématiques Approfondies, Sorbonne Université
- TDs in L2 - Algèbre linéaire, Sorbonne Université
CURSUS
- 2021-2022 : Master 2 of fundamental mathematics in University Paris Cité.
- 2020-2021 : Master 1 of fundamental and applied mathematics (cursus Jacques Hadarmard) in University Paris-Saclay.
- 2019-2020 : Licence 3 of fundamental and applied mathematics in University Paris-Saclay.
- 2017-2019 : CPGE MPSI/MP in Collège Stanislas Paris.