Partenaires

logo Sphere
CNRS
Logo Université Paris-Diderot Logo Université Paris1-Panthéon-Sorbonne


Rechercher

Sur ce site

Sur le Web du CNRS


Accueil > Séminaires en cours > Histoire et philosophie des mathématiques

Axe Histoire et philosophie des mathématiques

Histoire et philosophie des mathématiques



Le séminaire d’histoire et de philosophie des mathématiques est le point de rencontre des différents axes de l’Unité travaillant autour des mathématiques. Il entend favoriser le dialogue entre philosophes et historiens en prenant soin de toujours revenir aux sources textuelles –les orateurs sont vivement encouragés à fournir les documents permettant aux participants d’y accéder.


Coordination : Thomas BERTHOD, Clément BONVOISIN, Simon GENTIL (Université Paris Cité, SPHERE)


Grand merci à Charlotte de Varent, Simon Decaens, Marie-José Durand-Richard, Emmylou Haffner, Adeline Reynaud, Eleonora Sammarchi, et Alexis Trouillot, qui ont brillamment assuré la coordination du séminaire les années précédentes.

Archives
2009-2010, 2010-2011, 2011-2012,
2012-2013, 2013-2014, 2014-2015,
2015-2016, 2016-2017, 2017-2018,
2018-2019, 2019-2020, 2020-2021,
2021-2022, 2022-2023
PROGRAMME 2023-2024
Les séances ont lieu de 9h00 à 17h00 en Salle 628 (6ème étage-bâtiment Olympes de Gouge) - Université Paris Cité 8 rue Albert Einstein Paris 75013

Pour nous rejoindre en ligne, merci de regarder les modalités de connexion en tête du développé de chaque séance.

Le programme détaillé sera mis en ligne ultérieurement.


Lundi, 9 octobre 2023.
La séance aura lieu en salle 569 (5è étage) du bâtiment Olympe de Gouges.

Présentation des activités de l’axe Histoire et philosophie des mathématiques

Programme

  • 9h00 - 9h15
    Accueil des participant·es, mot d’introduction
  • 9h15 - 10h15
    Présentation du sous-axe Mathématiques du 19è au 21è siècle
  • 10h15 - 11h15
    Présentation du sous-axe Mathématiques de l’Antiquité à l’Âge classique
  • 11h15 - 11h30
    Pause
  • 11h30 - 12h30
    Présentation du sous-axe Pratiques mathématiques
  • 12h30 - 14h00
    Pause déjeuner
  • 14h00 - 14h45
    Séminaire Mathesis
  • 14h45 - 15h30
    Séminaire Lecture de textes mathématiques cunéiformes
  • 15h30 - 15h45
    Pause
  • 15h45 - 16h30
    Séminaire Lecture de textes mathématiques anciens
  • 16h30 - 17h15
    Présentation des ateliers de l’axe Histoire et philosophie des mathématiques
    17h15 - 17h30
    mot de conclusion


Du 6 au 7 novembre 2023

Colloque en l’honneur d’Eberhard Knobloch
Organisation : Karine Chemla, Ladislav Kvasz, David Rabouin, Arilès Remaki

Pour plus d’informations, veuillez consulter ce site
Télécharger le programme du colloque ci-dessous :








Lundi, 18 décembre 2023

Algébrisation des courbes
Organisation : Paul-Emmanuel Timotei

Simon Gentil (SPHERE/UPC), Brief overview of the use of algebra for a theory of curves between 1650 and 1750.
Résumé
In this communication, we propose to look at the use of algebra in geometry during the early modern period, particularly with the aim of establishing a theory of curves. We will take Descartes and the publication of his "Geometry," in French in 1637, then in Latin in 1649, and in 1659-1661 as a starting point. We will demonstrate that Descartes’ algebraic manipulations radically transform the geometric landscape of the time while following a certain tradition from the ancients. We will focus on how Descartes legitimizes and organizes the entire set of curves, rendered infinite, through his various classifications. We will also briefly discuss the popularization of the idea of a "curve in general". In the continuation of the presentation, we will comment Leibniz’s work on the "Conic Section" to highlight some issues in Descartes’ algebraic approach, as well as Newton’s work on the classification of third-order lines to pose some epistemological questions related to the use of algebra in the context of a general discourse on curves. In particular, we will address issues of unity, link between curve, equation and coordinates, handling of specific cases, consideration of infinite elements, etc. Finally, we will look at Euler’s work, in particular his method of identifying a curve with an equation, and we will comment the distance between Descartes’ descriptive algebra and Euler’s representative algebra. It will become apparent that algebra does not play the same role in the works of the second half of the 17th century and those of the following century. Understanding this change in status is crucial for comprehending how algebra and geometry intersect, especially in the case of studies on curves.

Claire Schwartz (Institut de Recherche Philosophique, Université Paris Nanterre), The correspondance between curves and equations in Reyneau’s Analyse démontrée
Résumé :
L’Analyse démontrée, written in 1708 by C. Reyneau, a close collaborator of N. Malebranche, is one of the first textbooks including both Cartesian algebra and infinitesimal calculus. Famous geometers like A. Clairaut and J.L-R d’Alembert read it and used it to learn and practice the differential and the integral calculus.
If it is one of the first-generation textbooks about the Leibnizian calculus, it can also be considered as a second-generation treatise on Cartesian algebra that it expanded upon : two of its main features consist of a generalization of the concept of equation that is not restricted anymore to polynomial equations, and of a systematic use of Cartesian coordinates. Reyneau can rely on these two elements to develop a program that the Cartesian Geometry of 1637 started but did not fully accomplish : a systematic study of curves by their equations.
We will therefore examine the goals set by this program, its accomplishments, and the relationship between geometry and algebra it presupposes.

Thierry Joffredo (AHP-PReST aux Archives Henri-Poincaré - UMR 7117 et IMJ-PRG UMR 7586), Singular points of algebraic curves : rediscoveries of Newton’s parallelogram method in the second half of the 19th century.
Résumé :
After 1850, in England, Germany or France, some of the mathematiciens who are interested in algebraic curves and their singular points rediscover the Newton’s parallelogram method, which seems then largely neglected, even forgotten, since the past century. "How completely it has dropped out of sight will appear from the uses which can be made of it, and which, it seems to me, must have been most obvious to any writer on curves, or on the theory of
equations, who had really obtained possession of it.", said Augustus de Morgan, obviously surprised, in a lecture read in front of the members of the Cambridge Philosophical Society in 1855 and later published in the Philosophical Transactions under the title „On the Singular Points of Curves, and on Newton’s Method of Coordinated Exponents“. In this talk, we will shortly expose some of the works of these 19th century geometers on algebraic curves putting into action the Newton’s parallelogram. We will therefore show that these new uses are mostly based on new readings of Gabriel Cramer’s Introduction à l’analyse des lignes courbes algébriques, printed in Geneva in 1750, in which is made extensive use of this method to study infinite branches and singular points of curves, thus illustrating the continuities that exist between the 18th and 19th centuries in geometry.

Les présentations seront suivies d’une table ronde avec les intervenant·es et l’audience du séminaire, animée par Karine Chemla, David Rabouin et Paul-Emmanuel Timotei.

Informations pratiques : le séminaire aura lieu en Salle 628, Bâtiment Olympe de Gouges (Place Paul Ricœur, 75013 Paris) de 9h30 à 17h00. Si vous souhaitez assister y assister, vous devrez demander un badge d’accès au 6ème étage à l’accueil du bâtiment. Si vous souhaitez assister à la séance en ligne, un lien Zoom peut vous être fourni sur demande – merci d’écrire un email à bonvoisin.clement@gmail.com, avec comme sujet « HPM18-12-2023 ». Le lien vous sera transmis la veille du séminaire.



Lundi, 8 janvier 2023

Séance de présentations
Organisation : Clément BONVOISIN

Frederike Lieven (Sorbonne Université)
The "New Math" reform in France and in Germany : the challenges of a comparative analysis
Résumé : In the 1960s, the “New Math” was a movement that promoted deep changes in the teaching of mathematics. In many countries, it led to reforms of mathematical instruction, in its content and methods. In the 1970s, after a strong public contest, the reforms were gradually abandoned.
The reform movement was international, whereas the reforms took place in a national context. Indeed, in France and Germany, the curricula were elaborated on a national or regional level. This entanglement of international and national factors makes it interesting, but also challenging, to study the “New Math” reform in a comparative way.
First of all, what does the “New Math” stand for ? Since the 1950s, the need for reform has become generally accepted among mathematics educators. At that time, the actors spoke about a modernisation of mathematics teaching. However, sources show that there was no consensus on the content of modernisation, and that the term was used with diverse meanings. International meetings and organisations contributed to shaping a more homogeneous understanding of the aims of the reform.
With regard to the institutional aspects, both in France and in Germany, the reform is carried out by a commission. However, there are important differences in the composition and the tasks of these commissions. Differences in the organisation between the two countries raise the question of the sources that the historian can use and of the possibility of making a comparison using different types of sources.
As a final point, I would like to analyse the public debate sparked by the reform, in order to show that the actors involved in the debate, as well as the issues mobilised for the contest, were by no means the same in France and in Germany. This raises the question of the interaction between an international movement and different national contexts.

Elisa Dalgalarrondo (SPHERE, Université Paris Cité)
Gendered representations in the mathematics of the Ladies’ Diary (1760-1784)
Résumé : The Ladies’ Diary is a British almanach published annually between 1704 and 1840. In this periodical, we can find different sections containing enigmas, charades, rebuses and mathematical questions to which members of the readership could directly participate by submitting their questions and solutions to the editor. Few of the contributors could read their own contributions with their name in the magazine issues, while the great majority of them could just see their names among lists of contributors following the published solutions. Initially adressed to « the Ladies », the Diary soon attracted a male readership. The period between around 1760 and 1790 tends to appear in the historiography as a time during which no women contributed to the mathematics of the Ladies’ Diary. Actually, two female names can be found among the frequent contributors of the mathematical questions. The first one is a man’s pseudonym from which we can find published participations. The second one is indeed a woman’s name, but just appeared among the unpublished contributors. In this talk, I will focus on these two cases in order to try to show how studying the mathematics of the Ladies’ Diary can raise some questions in terms of gendered representations.

Clément Bonvoisin (SPHERE, Université Paris Cité)
Failing to apply applied mathematics ? On Donald Bushaw’s Ph.D. dissertation (1949 – 1955)
Résumé : In this talk, I will discuss issues pertaining to the application of mathematics. How are mathematical problems and results shaped by technical issues ? Conversely, how do hypotheses made by mathematicians raise challenges for the design of instruments ? And to what extent can this impede the application of mathematical knowledge, so to speak ? In order to address these questions, I will build on the research carried out by US mathematician Donald Bushaw (1926 – 2012) for his Ph.D. thesis at Princeton University.
Back then, Bushaw worked as a consultant in a military-funded project. I will begin by discussing this broader project, what may be said of its practical aims, and the relations it had to the mathematical problem tackled by Bushaw. I will then turn to the mathematical content of the dissertation itself. Here, my focus will be on the differences between Bushaw’s work, and pre-existing research on similar practical problems by German engineer Irmgard Flügge-Lotz (1903–1974). I will show that these differences are threefold : in the relation between mathematics and technics ; in the mathematical problem at hand ; and in the generality of mathematical hypotheses made on solutions to the problem.
This last aspect will allow me to discuss the application of Bushaw’s results in the context of his project. As I will show, the mathematical generality of Bushaw’s work raised technical difficulties. In turn, these technical difficulties brought social and institutional issues, due to the military context in which Bushaw’s work was carried out. From this perspective, I will discuss intrications between mathematical, technical and social aspects in the application of mathematics, and how this may well cause failures in such applications.



Lundi, 5 février 2024

Journée “The Mathematizazion of Nature in the 16th and 17th Centuries”
Organisation : Vincenzo de Risi

Programme

  • 9:30-10:30
    David M. Miller (Auburn University), Catena’s ‘Third Kind of Thing’ in the Quaestio de Certitudine
  • 10:45-11:45
    Álvaro Bo (Academy Vivarium Novum, Rome), Mathematising the unmathematical : Alessandro Piccolomini on the (im)possibility of a quantified science of nature
  • 12:00-13:00
    Michela Malpangotto (Centre Jean Papin, Paris), A revolution before Copernicus. The precopernican astronomy issued from Georg Peurbach’s Theoricae novae planetarum (15th-17th c.)
  • 14:30-15:30
    Sophie Roux (École Normale Supérieure, Paris), Mathematics and Natural Philosophy in Descartes and in the Reception of Descartes
  • 15:45-16:45
    Robert DiSalle (University of Western Ontario), The metaphysics and method of Newton’s Mathematical Principles
    Résumé :
    Newton’s Principia was among the first examples, and eventually an ideal model, of what we now mean by “mathematical physics.” It is a challenge to understand, therefore, the view of some of his contemporaries that this work was only mathematics, and not physics at all. The explanation that is nearest to hand is that Newton’s approach set aside the pursuit of causal explanations : his contemporaries, dedicated to one or another form of the “mechanical philosophy,” would not recognize as a physical theory any mathematical account that, like Newton’s, provided no causal mechanism to explain its mathematical principles. Certainly some of Newton’s own remarks about the mathematical character of his work, and his disavowal of inquiry into the cause of gravity, seem to invite such an interpretation. But this interpretation falsely suggests an abandonment, at the very commencement of mathematical physics, of the very idea of physical understanding in favour of mathematical precision and predictive success. This is very far from Newton’s view of his work, its relation to the mechanical philosophy, and its actual and potential achievements. On the contrary, Newton considered his use of mathematics in physics to be a new and indispensable method for identifying, and understanding, the action of physical causes.
    Few of Newton’s contemporaries grasped the radical novelty of his mathematical method, and this explains some of the difficulties they had in grasping the metaphysical implications of his method. Huygens, in particular— arguably the most accomplished representative of the mechanical philosophy— articulated an ideal of physical explanation and the ways in which Newton’s theory fell short of the ideal. His own theory of gravity was meant to show the conceptual clarity and explanatory power of mechanistic principles. By comparing Huygens’ mechanical method with Newton’s mathematical method, we can see why Newton’s method providing insights into the metaphysics of causation that were hidden from the mechanistic view. In the subsequent evolution of physics, it was the Newtonian conception, properly understood, that illuminated the power of mathematical physics as a means of understanding causes as well as a tool for predicting effects. Newton’s method also shed light on fundamental philosophical problems concerning the applicability of mathematics to the world, including questions about the nature of empiricism and realism regarding mathematical theories, that have preoccupied philosophers even in the realm of post-Newtonian physics.


Lundi, 4 mars 2024

Algorithmes et logiciels
Organisation : Agathe Keller

Clément Cartier (SPHERE) et Eric Vandendriessche (CREDO)
"Algorithmes et logiciels un dialogue entre théorie informatique et ethnomathématique"

Baptiste Mélès ( Archives Henri-Poincaré, PReST)
"La programmation en chinois classique, le cas du logiciel Wenyan"

Maarten Bullynck (IDHE.S, Paris 8)
"Un algorithme n’est pas l’autre" Formes et matérialités d’un algorithme dans les années 1960"
Résumé :
Loin d’être une invariante, un algorithme peut avoir plusieurs formes et visages une fois implémenté sur un ordinateur. Cette observation sera illustrée par un cas spécifique : l’implémentation d’un crible arithmétique sur une variété de systèmes logiciel des années 1960. Selon la machine et le système utilisé (Multics, Illiac IV ou autre), le crible prendra d’autres formes, incommensurables entre eux, qui réflêchissent des aspects conceptuels, matériels et sociaux de son implémentation. La question se poste si on peut généraliser ces observations à d’autres lieux et époques.

Clément Bonvoisin (SPHERE)
"Adaptation d’algorithmes et implémentation sur ordinateur(s) : coopérations entre mathématiciens et ingénieurs à RAND Corporation (1946 – 1952)"
Résumé :
Dans cette présentation, je discuterai du traitement d’un problème d’aéronautique à l’aide d’ordinateurs à RAND Corporation. Dans le cadre de ce think tank financé par l’U.S. Air Force, des mathématiciens et des ingénieurs se sont attelés, entre 1946 et 1952, à la minimisation du temps de trajet d’avions et de missiles entre leur décollage et leur but. En particulier, je souhaite montrer comment l’implémentation du calcul des trajectoires optimales a été façonné par la nature du modèle mathématique posé, les relations entre mathématiciens et ingénieurs, et les instruments de calcul disponibles (un ordinateur analogique REAC et un ordinateur numérique produit par IBM).




Lundi, 22 avril 2024

Généralité
Organisation : Simon Gentil

Programme

  • 9h30-10h
    Accueil des Participants
  • 10h-11h15
    David Waszek (ENS, ITEM)
    Expressive Means and Generality : Some reflections on the use of algebra in geometry in the early seventeenth century
    Résumé : The use of algebra is often said to make geometrical problem-solving more “general” : problems that, in traditional diagram-based geometry, would have required separate treatments then become susceptible of a unified solution. This talk looks at how such issues actually played out in early-seventeenth-century applications of algebra to geometrical problems, with a special focus on thorny issues regarding problem individuation and the geometrical interpretation of negative results. This talk is partly based on work by, and joint work with, Ken Manders.
  • 11h15-11h30
    Pause
  • 11h30-12h45
    Agathe Keller (CNRS, SPHERE)
    Commenting on general statements : some working reflections on practices of generality in treatises and commentaries dealing with mathematics in Sanskrit.
    Résumé : What tools can we use to try to describe an actor’s understanding of “generality”, when such an actor does not explicitly state much about this topic, while as historians we are tempted to interpret his or her mathematical statements as reflecting such an aim ? This presentation will look at three sets of early mathematical texts in Sanskrit, investigating how authors and commentators understand the grouping of things that might be considered distinct. The two first case studies- one on Āryabhaṭa’s mathematical sūtras (499) and Bhāskara’s commentary on them (629) on the one hand, and Brahmagupta’s sūtras on mathematics and mathematical astronomy (628) and Pṛthūdhaka’s commentary (ca 850)- deals with mathematical objects and processes. The practices of specification (uddiś-) and variation (udahṛ-) of commentators will be a way to reflect on what then characterizes for them the statements that elicit their mathematical work. The third case is a reflection on what appears as an enduring standard of the representation of mathematical computations on a working surface in manuscripts : I suggest to consider them as representing a generic situation of computation, representing many possible computational media and instruments. In other words, this presentation will describe a variety of practices of generality in Sanskrit mathematical sources, a fact worth noting in itself as it goes against homogenizing conceptions of mathematical practices from South Asia.
  • 12h45-14h30
    Repas
  • 14h30-15h45
    Marco Panza (Chapman University and IHPST)
    What generality might have been for Euclid ?
    Résumé : In this talk, I’d delineate a conception of generality, which does not depend on any sort of universal generalization of geometrical objects, that seems compatible with Euclid’s conception of geometry and might explain the way he reaches universal results, tough working on particular instanciations.
  • 15h45-16h00
    Pause
  • 16h-17h15
    Filippo Constantini (CNRS, SPHERE)
    Absolute Generality without a Universal Domain
    Résumé : In this talk, after a brief introduction to the absolute generality debate, I introduce the notion of indefinite extensibility and argue that we can have absolutely general statements about an indefinitely extensible sequence of domains. As a consequence, absolutely general statements do not require the existence of a universal domain of everything.


Lundi,6 mai 2024

Séance de présentation
Organisation : Thomas Berthod

Programme :

  • 9h30-10h30
    Théophile Richard (SPHERE, Université Paris Cité)
    Titre : Les deux philosophies des mathématiques de Jules Vuillemin
    Résumé :
    Vuillemin est généralement connu d’abord pour sa classification des systèmes philosophiques et pour la façon dont il a tenté de jeter un pont entre les questions de fondement des mathématiques et l’histoire de la philosophie. La première philosophie des mathématiques de Vuillemin est ainsi constituée par son pluralisme qui porte essentiellement sur les grandes options qui se sont affrontées lors de la querelle des fondements. Nous aimerions montrer qu’il existe néanmoins une deuxième philosophie des mathématiques de Vuillemin, que celle-ci sous-tend son pluralisme et qu’elle semble ne pas constituer un choix philosophique à l’égard duquel son auteur est prêt à transiger.
  • 10h30-11h30
    Thomas Berthod (SPHERE, Université Paris Cité)
    Titre : Comment démontrer l’existence d’objets mathématiques d’après Henri Lebesgue ?
    Résumé :
    Dans un article de 1917 du Bulletin de la Société mathématique de France, Henri Lebesgue s’interroge sur les procédés mathématiques permettant d’établir l’existence d’objets mathématiques. En particulier, Lebesgue se demande s’il est possible d’établir véritablement l’existence d’un ensemble d’entités (une existence globale) sans spécifier l’existence d’une de ces entités, d’un élément de cet ensemble, c’est-à-dire sans mobiliser explicitement ou implicitement une existence individuelle. Dans cette présentation, nous verrons que cette question permet à Lebesgue de préciser son point de vue sur ce qu’il entend par « nommer » un objet mathématique. Ce terme a souvent été interprété comme une volonté de sa part d’adopter une attitude constructive ou effective dans tous les raisonnements mathématiques. Cependant, cet article nous montre qu’en réalité l’attribution d’une telle signification à ce terme n’est pas aussi évidente. Outre cette question, Lebesgue propose différentes méthodes pour établir l’existence d’objets mathématiques. Elles reposent toutes sur des arguments « quantitatifs », en des sens bien évidemment différents et à préciser selon la méthode. Ce trait commun nous paraît très révélateur d’une certaine conception philosophique des mathématiques, identifiable dans la pratique mathématique même que Lebesgue prône.
  • 11h30-11h45
    Pause
  • 11h45-12h45
    Nadiejda Tamitegama (SPHERE, Université Paris Cité et Université de Montréal)
    Titre : L’arithmétique de Jordanus de Nemore : construire les bases d’une arithmétique théorique inspirée d’Euclide et Boèce mais distincte
    Résumé :
  • 12h45-14h00
    Repas
  • 14h-15h
    Haolin Wang (SPHERE, Université Paris Cité)
    Titre : Charming or Not : Monetary Units in Bhāskara II’s Līlāvatī and Bhairava’s Līlāvatīvivaṇam
    Résumé :
    In this presentation, I will talk about the first verse of the arithmetic book Līlāvatī composed by Bhāskara II (b.1114-) in the 12th century. This verse provides a general definition (paribhāṣā) of measuring units beginning with cowry shells, and different metallic coins.
    I will focus on Bhairava’s Līlāvatīvivaṇam (Commentary of Līlāvatī) as known through a manuscript composed in 1784 CE. I will analyze the verse and commentary on monetary units in Bhairava’s commentary as compared with other books of arithmetic and mensuration in medieval India, including Mahāvīra’s Gaṇitasārasaṅgraha (Collection of mathematics Essence, 850 CE), Śridhara’s Pāṭigaṇita (ca. 850-950), Śripati’s Gaṇitatilaka (1039 CE), and Ṭhakkura Pherū’s Gaṇitasārakaumudī (The moonlight of the essence of mathematics, ca.1320s).
    By comparing those books, I analyze the sources of this verse in the Līlāvatī and explain why definitions for monetary values remained unchanged for hundreds of years. I will raise questions about the relation of Bhāskara II’s verse with the money of his time and place. Finally, I will look at Bhairava ’s understanding of Bhāskara II’s verse.
  • 15h00-15h15
    Pause
  • 15h15-16h15
    Edgar Enrique Solís de los Reyes (Universidad Nacional Autónoma de México)
    Titre : Three impossibilities in mathematics
    Résumé :
    In mathematics there are results which their answers to problems are negative, and which are opposite what was expected. These results are considered impossibilities, and some the most transcendent are : the quadrature of the circle, the Abel’s impossibility theorem and the Gödel incompleteness theorems. We are going to talk about these three results, their context, their proofs, and some of their implications in the development of the mathematical knowledge.


Lundi, 3 juin 2024

History of science as a scientists’ pursuit
La session a pour objectif de comprendre ce qui est en jeu pour les scientifiques lorsqu’ils pratiquent l’histoire des sciences dans le cadre de leur pratique des mathématiques. Quels sont les enjeux pour eux ? Quelle pratique de l’histoire des sciences ont-ils ? Quel type d’histoire écrivent-ils et comment les réflexions qu’ils développent sont-elles liées à leur propre travail scientifique ?


Organisation : Karine Chemla

Programme

  • 9h45-11h00
    Yuan Rui (SPHERE, CNRS & Université Paris Cité)
    The Work on the History of Mathematics Carried Out by Qing China Mathematicians :
    The Case of Li Rui’s 李銳 (1769– 1817) Editorial and Historical Work on the Sea Mirror of Circle Measurements (測圓海鏡 Ce yuan hai jing, 1248)

    Résumé :
    Modern historians of mathematics generally agree that the Song-Yuan times period (around the 12th and the 13th centuries) was an important period for mathematics in ancient China. After that, for reasons that remain to be uncovered, some mathematical methods and theories appeared to have become incomprehensible for scholars of the subsequent centuries. Among these methods, the “celestial source procedure” (天元術, tian yuan shu) became particularly difficult to understand, and then, starting from the 18th century, it aroused strong interest, becoming a focus for scholars. Since the mid-18th century, Mei Juecheng 梅瑴成 (1681–1763) reflected on the mathematics in ancient China through his Precious Relic along the Red River (赤水遗珍, chi shui yi zhen, 1761). His work enormously influenced contemporary scholars, especially the idea that “the ‘celestial source procedure’ is essentially the same as ‘algebra/borrowing the root’ ” (天元一即借根方解, tian yuan yi ji jie gen fang jie). This idea was generally accepted among scholars attempting to understand the mathematical methods and theories in ancient China. Li Rui 李銳 (1769 – 1817) was a polymath scholar active during the mid-Qing time
    period. He worked on both mathematics and the history of mathematics. This talk will mainly discuss his editorial works on the 13th-century mathematical monograph, the Sea Mirror of Circle Measurements (測圓海鏡 Ce yuan hai jing, 1248), a book which reflects how to use the “celestial source procedure”. I will focus on Li Rui’s editorial work, also, comparing Li Rui’s edition with the editions of the Sea Mirror before him. Through the comparison, this talk will emphasize how Li Rui carried out work in philology and the history of mathematics, and will aim to understand why Li Rui’s works are important and
    influential.
  • 11h00-12h15
    Ivahn Smadja (CAPHI, Nantes, & SPHERE)
    Coming to grips with Abel’s Theorem : A late nineteenth-century historiographical approach
    Résumé :
    In their 1894 report to the German Mathematical Society on The
    development of the theory of algebraic functions in ancient and modern times,
    Alexander Brill and Max Noether devoted a whole section to Abel’s theorem. This contribution will analyze how they dealt with it and tackled some of its
    mathematical intricacies, by putting it into a historical sequence owing to an aptly constructed historiographical framework. It will be shown in particular how they strove to bridge the gap between Euler’s algebraic and computational thinking and Abel’s highly general approach.
  • 12h15-13h30
  • 13h30 - 14h25
    Laurent Loison (SPHERE, CNRS & Université Paris Cité)
    Three biologists grappling with history of science : Ernst Mayr, François Jacob, and Stephen-Jay Gould
    Résumé :
    Interest in the history of science is generally uncommon among
    biologists of the second half of the 20th century. There are, however, some
    notable exceptions, such as Ernst Mayr (systematist and evolutionary theorist),
    François Jacob (molecular biologist) and Stephen-Jay Gould (paleo-biologist). In
    this talk, I will try to characterize their practice of the history of science, focusing on its possible interaction with their scientific activity. We will see that this interaction was minimal for Mayr, important but occasional for Jacob and nothing less than consubstantial for Gould.
  • 14h25-15h15
    Discussion
    Pause
  • 15h30-17h30
    Préparation du programme de l’année à venir


Haut de la page





. . . . . . . . . . . .

INFORMATIONS PRATIQUES

Metro : lignes 14 and RER C, arrêt : Bibliothèque François Mitterrand ou ligne 6, arrêt : Quai de la gare. Bus : 62 and 89 (arrêt : Porte de France), 325 (arrêt : Watt), 64 (arrêt : Tolbiac-Bibliothèque François Mitterrand)

Haut de la page